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Abstract

Antarctic notothenioid fishes represent a rare example of a marine species flock. They
evolved special adaptations to the extreme environment of the Southern Ocean including
antifreeze glycoproteins. Although lacking a swim bladder, notothenioids have diver-
sified from their benthic ancestor into a wide array of water column niches, such as
epibenthic, semipelagic, cryopelagic and pelagic habitats. Applying stable carbon (C)
and nitrogen (N) isotope analyses to gain information on feeding ecology and foraging
habitats, we tested whether ecological diversification along the benthic–pelagic axis
followed a single directional trend in notothenioids, or whether it evolved indepen-
dently in several lineages. Population samples of 25 different notothenioid species were
collected around the Antarctic Peninsula, the South Orkneys and the South Sandwich
Islands. The C and N stable isotope signatures span a broad range (mean d13C and d15N
values between )25.4& and )21.9& and between 8.5& and 13.8&, respectively), and
pairwise niche overlap between four notothenioid families was highly significant.
Analysis of isotopic disparity-through-time on the basis of Bayesian inference and
maximum-likelihood phylogenies, performed on a concatenated mitochondrial (cyt b)
and nuclear gene (myh6, Ptr and tbr1) data set (3148 bp), showed that ecological
diversification into overlapping feeding niches has occurred multiple times in parallel in
different notothenioid families. This convergent diversification in habitat and trophic
ecology is a sign of interspecific competition and characteristic for adaptive radiations.
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Introduction

Adaptive radiation, the evolution of ecological and phe-
notypic diversity within a rapidly multiplying lineage,
is thought to be responsible for a great portion of the
diversity of life (Simpson 1953; Schluter 2000). The most
famous examples of adaptive radiations are the Dar-
win’s finches on Galápagos, the Caribbean Anolis liz-
ards and the East African cichlid fishes. One of the key

features of an adaptive radiation is the correlation
between the morphologically diverse phenotypes of the
‘participating’ species and the various habitats that
these occupy (Schluter 2000). While it is conceivable
how such an ‘adaptive disparity’ is fulfilled by the par-
adigmatic Darwin’s finches, anoles and cichlids with
their characteristic adaptations in beaks, limbs and tro-
phic structures, respectively, the inference of pheno-
type-environment correlation remains a challenge in
other cases of adaptive radiation (Schluter 2000; Gavri-
lets & Losos 2009).

In fishes, most studies on adaptive radiation focus on
freshwater systems, with the cichlid species flocks of
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the East African Great Lakes being the prime examples
(Salzburger 2008, 2009). The Antarctic notothenioids
represent a marine species flock that evolved under
extreme environmental conditions (Eastman & Clarke
1998; Eastman 2000). The perciform suborder Notothe-
nioidei diversified into at least 130 species in eight fami-
lies, encompassing over 100 Antarctic species (Eastman
2005; Eakin et al. 2009). Three ancestral families,
Bovichtidae, Pseudaphritidae and Eleginopidae, com-
prise eleven primarily non-Antarctic species, distributed
around southern South America, the Falkland Islands,
southern New Zealand and southeastern Australia
(Eastman 1993). The remaining families Artedidraconi-
dae, Bathydraconidae, Channichthyidae, Harpagiferidae
and Nototheniidae are, with few exceptions, endemic to
Antarctic waters and are usually referred to as the ‘Ant-
arctic clade’ (e.g. Eastman 1993). Notothenioids domi-
nate the Antarctic continental shelf and upper slope,
accounting for approximately 46% of the species diver-
sity and over 90% of the fish biomass (Eastman &
Clarke 1998; Eastman 2005).

Antarctic waters are constrained by the Antarctic Cir-
cumpolar Current (ACC). The Antarctic Polar Front, the
northern boundary of the ACC between 50"S and 60"S,
acts as major oceanographic barrier, effectively isolating
the Southern Ocean faunal assemblages from those of
the Indian, Pacific and Atlantic oceans. Through the
establishment of a thermally and oceanographically iso-
lated area and the inhibition of faunal admixture, the
Antarctic Polar Front is, hence, a likely driver of noto-
thenioid evolution (Coppes Petricorena & Somero 2007).
As a means to adapt to Southern Ocean environmental
conditions, the Antarctic notothenioids evolved special
anatomical and physiological features and, at the same
time, lost traits no longer ‘needed’ in permanently cold
waters: (i) The evolution of antifreeze glycoproteins is
regarded as an evolutionary key innovation of notothe-
nioids (Eastman 1993; Matschiner et al. 2011), facilitat-
ing permanent life in subzero temperate waters. (ii) All
notothenioids lack a functional swim bladder. Several
pelagic species, however, have evolved neutral buoy-
ancy by a combination of skeletal mineralization and
the accumulation of lipid deposits (Eastman 1993; Klin-
genberg & Ekau 1996). (iii) Some notothenioids have
lost the classical heat-shock protein response (Place &
Hofmann 2005; Clark et al. 2008). (iv) The Channich-
thyidae represent the only known vertebrate group that
lacks erythrocytes in the adult state and that is unable
to synthesize a functional version of the respiratory
oxygen transporter haemoglobin (Ruud 1954; Near et al.
2006).

Here, we investigate niche evolution in notothenioids,
using a set of 25 representative species (and 365 indi-
viduals) that belong to four of the five notothenioid

families in the exceptionally species-rich Antarctic
clade. Apparently, Antarctic notothenioids diversified
along the benthic-pelagic axis in the absence of competi-
tion from other fish taxa (Eastman 1993, 2005). From a
morphological perspective, this process termed ‘pelagi-
zation’ appears to have occurred independently in sev-
eral clades (Klingenberg & Ekau 1996; Bargelloni et al.
2000).

We used isotopic signatures as indicators for ecologi-
cal specialization to assess the diversity of lifestyles and
feeding strategies ⁄ habits of the Antarctic clade, as has
been done for adaptively radiating rockfishes (Ingram
2011), and to further test whether these strategies ⁄ habits
evolved clade-specifically and unidirectionally or inde-
pendently in several lineages. Stable isotope analysis
(SIA) makes use of the fact that the C and N stable iso-
tope signatures (d13C and d15N) of organisms are
directly related to their diet. In general, the ratio of the
heavier over the lighter stable isotope is greater in con-
sumers than in food material and thus continuously
increases with trophic level (TL; e.g. Hobson & Welch
1992; Hobson et al. 1994). This is particularly true for
nitrogen, where N isotope fractionation leads to trophic
shifts of 3–5& (DeNiro & Epstein 1978; Minagawa &
Wada 1984; Post 2002). The C isotope fractionation is
less pronounced during food chain processing, with a
typical 1& increase per TL (Hobson & Welch 1992).
Yet, carbon isotopic values can often be used to assess
constraints on the primary carbon source, which can
vary strongly between different feeding grounds (e.g.
inshore vs. offshore and pelagic vs. benthic). Thus,
while N isotope ratios can be used to predict the rela-
tive TL of an organism, its C isotopic composition
yields valuable information with regard to its habitat
(e.g. Hobson et al. 1994).

To reconstruct the evolution of ecological specializa-
tion in notothenioids, which has not been studied in
detail, we established a new phylogeny of the studied
species based on mitochondrial and nuclear markers
[3148 base pairs (bp) in total]. This phylogeny extends
previous work (e.g. Near & Cheng 2008) by the use of
multiple nuclear markers and by the longest total
sequence length used in notothenioid phylogenetics to
date. Phylogeny and time estimation were fully inte-
grated with SIA by the application of a disparity-
through-time (DTT) analysis.

According to the results of earlier studies (Klingen-
berg & Ekau 1996; Eastman & McCune 2000), we
expected to find evidence for independent colonization
of ecological niches in different lineages. Furthermore,
should previous descriptions of the notothenioid diver-
sification as an adaptive radiation be appropriate, the
pattern of average subclade disparity throughout the
radiation could be expected to resemble those found in
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other adaptive radiations like Liolaemus lizards (Harmon
et al. 2003) or Tanganyikan cichlid fishes (Gonzalez-Vo-
yer et al. 2009) and to be different from patterns
observed in putative non-adaptive radiations, such as
rats (Rowe et al. 2011).

Materials and methods

Sample collection

Sampling took place during three expeditions in the
austral summer to the Scotia Sea: The ICEFISH 2004
cruise with RV Nathaniel B. Palmer (Jones et al. 2008),
cruise ANT-XXIII ⁄ 8 with RV Polarstern, and the
2008 ⁄ 09 US AMLR Survey with RV Yuzhmorgeologiya
(Jones et al. 2009) (Fig. 1 and Table 1, Tables S1 and
S2, Supporting information). White muscle tissue sam-
ples were preserved in 95% ethanol and stored at
)20 "C for subsequent investigations. A total of 365
adult individuals of 25 Antarctic notothenioid species
were processed for SIA. Molecular analyses were per-
formed with 39 individuals of the same 25 species and
three representatives of non-Antarctic notothenioid fam-
ilies serving as outgroups (Table 1).

DNA extraction, amplification, sequencing and
alignment

Genomic DNA from approx. 10 mm3 white muscle
tissues was extracted by proteinase K digestion,
followed by sodium chloride extraction and ethanol
precipitation. Marker selection was based on the
genome-wide marker comparison of Li et al. (2007). We
included a fast-evolving gene (myh6), a gene evolving at
intermediate rates (Ptr) and a slowly evolving gene
(tbr1). As a representative mitochondrial marker

(mtDNA), we used cytochrome b (cyt b), which had
previously been proven suitable for phylogenetic analy-
ses in notothenioids (Chen et al. 1998; Matschiner et al.
2011). Nuclear markers were amplified with the follow-
ing primer pairs: myh6_F507 ⁄ myh6_R1325, Ptr_F458 ⁄
Ptr_R1248 and tbr1_F86 ⁄ tbr1_R820 (Li et al. 2007); the
amplification of cyt b was performed using the primers
NotCytBf and H15915n (Matschiner et al. 2011).
Sequences of the three outgroup species and Pogonoph-
ryne scotti, as well as Ptr sequences of Notothenia corii-
ceps and Trematomus newnesi were obtained from
GenBank (see Data accessibility and Table S4, Support-
ing information).

The gene fragments were amplified using different
polymerase chain reaction (PCR) protocols. Cyt b, myh6
and Ptr PCR products were achieved using the Finn-
zymes’ Phusion# High-Fidelity DNA Polymerase (Finn-
zymes). Individual reaction volumes contained 8.6 lL
ddH20, 10.0 lL 2 · Phusion# Master Mix with HF Buf-
fer [containing 0.04 U ⁄ lL Phusion# DNA Polymerase,
2 · Phusion# HF Buffer, 400 lM of each deoxynucleo-
tides (dNTP)], 0.2 lL forward primer, 0.2 lL reverse
primer and 1.0 lL DNA template. The PCR profiles
included initial denaturation (30 s, 98 "C), followed by
30 (cyt b) or 40 cycles (myh6, Ptr) of denaturation (10 s,
98 "C), annealing (30 s, 56 "C) (53 "C for Ptr), extension
(30 s, 72 "C) and a final extension phase (10 min,
72 "C). Tbr1 amplification was achieved using REDTaq#

DNA Polymerase (Sigma-Aldrich). The PCR mixes
contained 5.5 lL ddH2O, 1.25 lL 10· Taq buffer
(Sigma-Aldrich), 1.0 lL MgCl2, 1.25 lL dNTP mix,
1.0 lL forward primer, 1.0 lL reverse primer, 0.5 lL
REDTaq# DNA Polymerase (Sigma-Aldrich) and 1.0 lL
DNA template. Amplifications of tbr1 were carried out
using the following temperature profile: initial denatur-
ation (2 min, 94 "C) followed by 32 thermocycles of
denaturation (30 s, 94 "C), annealing (30 s, 57 "C),
extension (1 min, 72 "C) and a final extension phase
(7 min, 72 "C). All amplification products were purified
using the ExoSAP-IT (USB) standard protocol, adding
0.5 lL ExoSAP-IT and 3.5 lL ddH2O to 2.5 lL PCR
templates, incubating (15 min, 37 "C; 15 min, 80 "C)
and, in some cases, using the GenElute$ Gel Extraction
Kit (Sigma-Aldrich). The purified PCR products were
used as templates for cycle sequencing reactions with
the BigDye# Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems), following the manufacturer’s
instructions. The reaction volumes included 0.5 lL pri-
mer, 1.0 lL BigDye# Terminator Reaction Mix (Applied
Biosystems) and 3.0–6.5 lL purified DNA in a total vol-
ume of 8 lL. The nuclear markers were sequenced with
one forward and reverse primer each. Sequencing of cyt
b was additionally performed with two different for-
ward primers: NotCytBf (Matschiner et al. 2011) and
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Fig. 1 Sampling sites off the northern Antarctic Peninsula, the
South Orkney Islands and the South Sandwich Islands. The
solid line indicates the 1000 m depth contour.
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cytbcentralF (5¢- CYA CCC TNA CYC GYT TCT TTG C
-3¢), which was newly designed to bind at a central
position of cyt b (bases 518–539 in cyt b of Chionodraco
rastrospinosus). The reaction conditions were as follows:
initial denaturation (1 min, 94 "C) followed by 25 cycles
of denaturation (10 s, 94 "C), annealing (20 s, 52 "C)
and elongation phase (4 min, 60 "C). Unincorporated
BigDye# terminators were removed with the BigDye#

XTerminator$ Purification Kit (Applied Biosystems). To
this end, 14.5 lL ddH2O, 22.5 lL SAM$ solution and
5.0 lL XTerminator$ beads were added to the sequenc-
ing products, then shaken (30 min, 2000 rpm), and
finally centrifuged (2 min, 211 g). All sequences were
read with an ABI3130xl Capillary Sequencer (Applied

Biosystems). Sequence reads were verified by eye, and
forward and reverse fragments were assembled using
CODONCODE ALIGNER v.3.5.6 (CodonCode Corporation).

All sequences were aligned per locus with the multi-
ple sequence alignment program MAFFT v.6.717b (Katoh
& Toh 2008). The alignments were trimmed in MESQUITE

v.2.72 (Maddison & Maddison 2009) so that each align-
ment started and ended with codon triplets, and we
also checked for stop codons. Alignments were concate-
nated and partitioned by molecule type and codon posi-
tion to account for heterogeneity in evolutionary rates
and substitution patterns. Thus, the first and second
codon positions of mitochondrial cyt b (‘mit12’), the
third codon positions of mitochondrial cyt b (‘mit3’), the

Table 1 Sampled species with collec-
tion site, sample size for stable isotope
analysis (n) and lifestyle of adult indi-
viduals. Lifestyle descriptions are often
based on trawl depth and may not be
definite.

Sample Location (n) Lifestyle of adults

Bovichtidae
Bovichtus diacanthus Tristan da Cunha

Pseudaphritidae
Pseudaphritis urvillii Victoria, Australia

Eleginopidae
Eleginops maclovinus South America

Nototheniidae
Aethotaxis mitopteryx AP (4), SO (7) Pelagic*,†,‡,§, benthopelagic–

Dissostichus mawsoni AP (2), SO (5) Pelagic†,§

Gobionotothen gibberifrons AP (10), SO (10) Benthic†,‡

Lepidonotothen larseni SO (10), SSI (10) Semipelagic†

Lepidonotothen nudifrons SO (10) Benthic†,§

Lepidonotothen squamifrons AP (10), SO (10) Benthic†

Notothenia coriiceps AP (10), SO (11) Benthic§

Notothenia rossii SO (11) Semipelagic†

Pleuragramma antarcticum AP (10), SO (10) Pelagic*,†,§

Trematomus eulepidotus AP (10), SO (10) Epibenthic*,†,‡

Trematomus hansoni SO (11) Benthic†,‡

Trematomus newnesi AP (10), SO (10) Cryopelagic†

Trematomus nicolai SO (6) Benthic*,†,‡,**,††, benthopelagic‡‡

Trematomus tokarevi SO (11) Benthic††

Artedidraconidae
Pogonophryne barsukovi SO (8) Benthic§§

Pogonophryne scotti SO (10) Benthic†,§§

Bathydraconidae
Gymnodraco acuticeps AP (15) Benthic†

Parachaenichthys charcoti SO (11) Benthic†

Channichthyidae
Chaenocephalus aceratus AP (10), SO (10) Benthic†,––

Chaenodraco wilsoni AP (10) Pelagic***

Champsocephalus gunnari AP (11), SO (10) Pelagic†,––

Chionodraco rastrospinosus AP (10), SO (10) Benthic†, benthopelagic†††

Cryodraco antarcticus AP (10), SO (10) Pelagic†, benthic––

Neopagetopsis ionah AP (6), SO (6) Pelagic––

Pseudochaenichthys georgianus SO (10) Pelagic†,––, semipelagic†

*DeWitt et al. (1990); †Eastman (1993); ‡Klingenberg & Ekau (1996); §Kock (1992);
–Kunzmann & Zimmermann (1992); **Kuhn et al. (2009); ††La Mesa et al. (2004);
‡‡Brenner et al. (2001); §§Lombarte et al. (2003); ––Kock (2005); ***Kock et al. (2008);
†††Hureau (1985b).
AP, Antarctic Peninsula, SO, South Orkney Islands, SSI, South Sandwich Islands.
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first and second codon positions of nuclear genes
(‘nuc12’) and the third positions of nuclear genes
(‘nuc3’) were used as separate partitions. In a second
partitioning scheme, the data set was partitioned with
respect to the four genes. The best-fitting models of
molecular evolution for each of the eight partitions
were estimated with the computer program JMODELTEST

v.0.1.1 (Posada 2008), using the Bayesian information
criterion (BIC; Schwarz 1978). Selected models were
TPM2uf+G (myh6), K80+G (Ptr), HKY+I (tbr1), TrN+G+I
(cyt b), HKY+I+G (mit12), K80+I (nuc12) and TrN+G
(mit3, nuc3).

Phylogenetic analysis

Phylogenetic tree reconstructions were carried out using
maximum-likelihood (ML) and Bayesian inference (BI)
approaches. Maximum-likelihood phylogenetic infer-
ence was performed with both partitioning schemes,
applying the respective models of molecular evolution
for each partition, in a partition-enabled version of
GARLI, GARLI-PART v.0.97 (Zwickl 2006). Heuristic searches
were used to find the topology with the best likelihood
score. The searches were conducted using automatic
termination, after a maximum of 5 million generations,
or, alternatively, after 10 000 generations without signif-
icant (P < 0.01) improvement in scoring topology. Boot-
strap (BS) analysis was performed with 100 BS
replicates, which were summarized using PAUP*
v.4.0a110 (Swofford 2003). The non-Antarctic nototheni-
oid species Bovichtus diacanthus was defined as out-
group on the basis of well-supported phylogenetic
information (e.g. Near & Cheng 2008; Matschiner et al.
2011).

Bayesian phylogenetic analyses were performed with
the software BEAST v.1.5.3 (Drummond & Rambaut
2007). For divergence date estimation, the separation of
Bovichtidae, Pseudaphritidae and Eleginopidae from
the Antarctic lineage (nodes A, B, and C in Fig. 3), as
well as the initial diversification of the Antarctic clade
(node D) were temporally constrained according to the
results of Matschiner et al. (2011). Specifically, normal
prior distributions were used for each of these splits to
approximate highest posterior density (HPD) intervals
found by Matschiner et al. (2011). Thus, the root of Not-
othenioidei (node A) was constrained with a mean
divergence prior to 71.4 million years ago (Ma; 2.5%
quantile: 89.1 Ma, 97.5% quantile: 53.8 Ma), and nodes
B-D were constrained at 63.0 (79.5–46.6) Ma, 42.9 (56.5–
29.4) Ma and 23.9 (31.3–16.4) Ma, respectively. While
these time constraints generally agree with the interpre-
tation of Proeleginops grandeastmanorum from the La
Meseta Formation on Seymour Island (!40 Ma; East-
man & Grande 1991) as an early representative of the

eleginopid lineage (Balushkin 1994), we deliberately
avoided using it as a time constraint owing to its
debated taxonomical assignment (Near 2004). With the
exception of outgroup relationships, which were used
for time calibration, no topological constraints were
applied. Divergence dates were estimated using the un-
correlated lognormal relaxed molecular clock and the
reconstructed birth-death process as a tree prior (Gern-
hard 2008). Following Shapiro et al. (2006), we imple-
mented the codon position-specific model of sequence
evolution HKY112 + CP112 + C112, but we furthermore
tested GTR112 + CP112 + C112 and the model combina-
tion selected by BIC for codon-specific partitions. For
each of the three combinations, 10 independent analyses
were performed with 20 million generations each. Rep-
licates were combined in LOGCOMBINER v.1.5.3 (Drum-
mond & Rambaut 2007) after removing the first
2 million generations of each run as burn-in. Conver-
gence of run replicates was verified by effective sample
sizes > 1200 for all parameters and by comparison of
traces within and between replicates in TRACER v.1.5
(Rambaut & Drummond 2007). The three settings were
compared with Bayes factors (BF), using the harmonic
mean approach as implemented in TRACER. While we
acknowledge that the harmonic mean estimator may be
biased towards more parameter-rich models (Lartillot &
Hervé 2006), we chose this approach owing to the lack
of suitable alternatives. As the inclusion of multiple
individuals per species may violate assumptions of con-
stant diversification implicit in the birth–death tree
prior, BI analyses were repeated with a reduced data
set containing only one individual of each species.

Stable isotope analysis

In this study, approximately 10 mm3 of white muscle
tissue was used for the SIA. White muscle tissue is less
variable with regard to the carbon and nitrogen isotope
composition and has a longer retention time than other
tissue types (Pinnegar & Polunin 1999; Quevedo et al.
2009). Samples were dried (24 h, 60 "C) and then
ground in a Zirconia bead mill (30 min, 1800 bpm).
Then, the sample powder was rinsed from the beads
using 1 mL 99% ethanol, and the supernatant was
evaporated (24 h, 60 "C). The ethanol treatment had no
effect on subsequent carbon isotope analyses (e.g. Syvä-
ranta et al. 2008). For C and N isotope measurements,
between 0.5 and 0.8 mg sample powder was filled into
5 · 9 mm tin capsules and introduced into an elemental
analyser (Thermo Finnigan) coupled to a Finnigan Delta
V Advantage Isotope Ratio Mass Spectrometer, with
standard setup for N2 and CO2 analysis. Measurements
were replicated for about 10% of the samples (42 sam-
ples). The isotopic composition is expressed in the
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conventional delta notation as permil (&) deviation vs.
atmospheric N2 (AIR) and carbonate standards (V-
PDB): d = [(Rsample ⁄ Rstandard) – 1] · 1000, with R repre-
senting the ratio of the heavy to the light isotope (i.e.
13C ⁄ 12C and 15N ⁄ 14N) in the sample and in the standard
material, respectively. EDTA (d13C = )30.25&, d15N =
)1.1&) and ammonium oxalate (d13C = )17.02&,
d15N = 32.7&) were used as internal standards, calibrated
against international nitrogen (IAEA-N1, IAEA-N2) and
carbon (NBS22) standards. The analytical reproducibil-
ity based on replicate sample and standard measure-
ments was better than 0.2& for both d13C and d15N.
Isotope values are presented as mean ± standard devia-
tion (SD). Variable lipid content can have a biasing
effect on the interpretation of bulk C and N stable
isotope data. In marine fish samples, this effect seems
to be minor (Kiljunen et al. 2006; Logan et al. 2008),
and hence, we did not perform a lipid removal step.
Nevertheless, we performed a posteriori ‘mathematical
lipid correction’ after the study of Logan et al. (2008).
The correction, however, did not affect the species dis-
tribution pattern, and thus, only the uncorrected values
are presented in this study. (The corrected data set is
available upon request.)

Statistical analysis

The correlation of d13C and d15N was tested with a
Pearson correlation, whereby we accounted for phyloge-
netic non-independence using phylogenetic indepen-
dent contrast (‘pic’ function in the R package ‘ape’;
Paradis et al. 2004; R Development Core Team 2009).
We tested for the effect of geographic sites on isotopic
signatures by comparison of pooled d13C and d15N val-
ues between AP and SO (t-test). Here, only values from
species with similar sample sizes at both locations were
considered. Pairwise niche overlap between all families
and additional comparisons of the nototheniid Lepido-
notothen–Trematomus clade with the other families were
tested with a multivariate analysis of variance (MANOVA).
To assess the group overlap in isotopic signatures, we
calculated Wilk’s lambda (Wilk’s k) for each compari-
son.

We analysed the subdivision of ecological niche space
throughout the radiation using the BI phylogeny
(Fig. 3) and the averaged stable isotope data for each
species. Average subclade disparity was calculated at
each splitting event and plotted against time. A Brown-
ian motion (BM) model of trait evolution was employed
for comparison. Disparity-through-time analyses were
conducted in R using the package ‘geiger’ (Harmon
et al. 2008). Using 475 trees drawn from the posterior
distribution of the BI analysis and 500 permutations of
the stable isotope data, we assessed the robustness of

the observed pattern against phylogenetic uncertainty
and intraspecific variation.

Results

Phylogenetic analysis

The alignments had lengths of 1099 bp (cyt b), 705 bp
(myh6), 702 bp (Ptr) and 642 bp (tbr1), resulting in a
total of 3148 bp with only 0.3% missing data. The myh6
alignment contained a short insertion (6 bp) in the non-
Antarctic outgroup B. diacanthus; these 6 bp were
excluded from the following phylogenetic analyses.
Sequences are available at GenBank under the accession
numbers JF264479–JF264629. Bayes factors provided
‘very strong’ (Kass & Raftery 1995) evidence that the
codon position-specific combination of substitution
models selected by BIC yielded a better fit than both
the HKY112 + CP112 + C112 (log 10 BF 6.215) and
GTR112 + CP112 + C112 (log 10 BF 19.19) models.

Our ML and BI phylogenetic analyses produced iden-
tical topologies and confirmed the monophyly of the
Antarctic clade with high support values (BS 100%;
Fig. 2, Fig. S1, Supporting information). Yet, BS support
and Bayesian posterior probability (BPP) were low at
the base of the diversification of the Antarctic clade
(but high at species-level relationships). In all cases,
clustering of individuals from different populations of
the same species was strongly supported (BS ‡ 93%
and BPP = 1.00). The three families Artedidraconidae,
Bathydraconidae and Channichthyidae were recovered
as monophyletic, while the Nototheniidae appeared pa-
raphyletic. An ancestral position was assigned to Aetho-
taxis mitopteryx. The monophyly of a clade containing
Lepidonotothen and Trematomus was highly supported
(BS 100% and BPP 1.00), and Notothenia appeared as
the sister group to the more derived ‘high-Antarctic
clade’, comprising the families Artedidraconidae, Bathy-
draconidae and Channichthyidae. Both the high-Antarc-
tic clade and the channichthyid family were found
monophyletic with BS 100% and BPP 1.00. The two ar-
tedidraconids, P. barsukovi and P. scotti, grouped
together in all analyses (with high support values).
Monophyly of the two bathydraconid representatives
was weakly supported (BS 35% and BPP 0.67). Within
the family of Channichthyidae, Champsocephalus gunnari
was placed as sister species of all other representatives
followed by a clade containing Pseudochaenichthys georgi-
anus and Neopagetopsis ionah and a clade containing the
four genera Chionodraco, Chaenodraco, Chaenocephalus
and Cryodraco. The ML reconstruction with gene-spe-
cific partitions resulted in minor topological differences
(Fig. S1, Supporting information). Reduction in the data
set to one individual per species did not change the tree
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topology with the exception of Dissostichus mawsoni,
which appeared basal to a group containing the high-
Antarctic clade as well as Nototheniia, Pleuragramma and
Gobionotothen and the relationships within the Tremato-
mus genus (Fig. S1, Supporting information).

According to our time-calibrated phylogeny, diversifi-
cation of the well-supported nototheniid clade combin-
ing Lepidonotothen and Trematomus began 12.0 Ma (95%
HPD 16.4–7.9 Ma; node H) (Fig. 3). The high-Antarctic
clade separated from the Nototheniidae around 18.6
Ma (95% HPD 24.0–13.4 Ma; node E). Within the high-
Antarctic clade, artedidraconids separated from bathy-
draconids and channichthyids around 14.6 Ma (95%
HPD 15.5–7.0 Ma; node F). The split between Bathy-
draconidae and Channichthyidae occurred around
2 million years later (12.5 Ma; 95% HPD 16.7–8.5 Ma;
node G). The radiation of Channichthyidae, the most
derived notothenioid family, began 7.7 Ma (95% HPD
10.6–5.0 Ma; node I).

Stable C and N isotope ratios

The stable carbon and nitrogen isotope composition for
the 25 notothenioid species exhibited a comparatively
large variability, with values between )27.8& and
)19.7& for d13C and between 7.3& and 15.6& for d15N
(Fig. 3). Mean values ranged between )25.4& and
)21.9& for d13C (SD: 0.3& to 1.8&) and 8.5& to 13.8&
for d15N (SD: 0.2& to 1.7&; Fig. 4). Intraspecific ranges
of isotopic signatures span from 1.0& to 8.1& for d13C
and from 0.4& to 5.7& for d15N. Overall, mean intra-
specific ranges (d13C: 2.79&, d15N: 2.80&) were small
compared to interspecific ranges of isotopic signatures
(d13C: 8.12&, d15N: 8.29&). The isotopic signatures of
d13C and d15N correlated significantly (0.69; P < 0.001),
and the correlation remained significant (P < 0.01) after
correcting for phylogenetic non-independence. No sig-
nificant difference between values from AP and SO
locations was found (P > 0.16; t-test), even though the

Bovichtus diacanthus
Pseudaphritis urvillii

Eleginops maclovinus
Aethotaxis mitopteryx AP
Aethotaxis mitopteryx SO

Dissostichus mawsoni AP
Dissostichus mawsoni SO

Lepidonotothen squamifrons AP
Lepidonotothen squamifrons SO

Lepidonotothen nudifrons SO
Lepidonotothen larseni SO
Lepidonotothen larseni SSI
Trematomus tokarevi SO

Trematomus nicolai SO
Trematomus newnesi AP
Trematomus newnesi SO

Trematomus hansoni SO
Trematomus eulepidotus AP
Trematomus eulepidotus SO

Gobionotothen gibberifrons AP
Gobionotothen gibberifrons SO

Pleuragramma antarcticum AP
Pleuragramma antarcticum SO

Notothenia rossii SO
Notothenia coriiceps AP
Notothenia coriiceps SO

Pogonophryne scotti SO
Pogonophryne barsukovi SO

Gymnodraco acuticeps AP
Parachaenichthys charcoti SO

Champsocephalus gunnari AP
Champsocephalus gunnari SO

Pseudochaenichthys georgianus SO
Neopagetopsis ionah AP
Neopagetopsis ionah SO

Chionodraco rastrospinosus AP
Chionodraco rastrospinosus SO

Chaenodraco wilsoni AP

Cryodraco antarcticus AP
Cryodraco antarcticus SO

Chaenocephalus aceratus AP
Chaenocephalus aceratus SO

0.03 Substitutions per site

Fig. 2 Maximum-likelihood tree of the notothenioid phylogeny based on the codon position–specific partitioning scheme. Filled cir-
cles indicate strongly supported nodes, and moderately supported nodes are marked by open circles Bootstrap (BS ‡ 95 and
BS ‡ 70). All species are coloured according to family: brown = non-Antarctic species, green = Nototheniidae, yellow = Artedidraco-
nidae, orange = Bathydraconidae and red = Channichthyidae.
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mean values differed slightly (AP d13C: )24.37&, SO
d13C: )24.13&; AP d15N: 11.30&, SO d15N: 10.99&).

With regard to inferred lifestyle patterns, our SIA data
are consistent with previous studies (Hobson et al. 1994;
Post 2002) in that species that are commonly classified
as pelagic clustered around lower d13C values, while
benthic species possessed relatively higher d13C signa-
tures. However, there are notable exceptions to this:
D. mawsoni, C. rastrospinosus, Trematomus nicolai and
T. tokarevi (Fig. 4, Table 1 and Data S1, Supporting
information). Most species had relatively high d15N
signatures, indicating feeding at upper TL. The two
well-represented families Nototheniidae and Channich-
thyidae covered a wide range of isotopic signatures,
while bathydraconids and artedidraconids displayed a
relatively low variability in both d13C and d15N
(although the number of individuals was significantly
lower). Overlap of the C and N isotope compositions as
proxies for niche space was found in all pairwise com-
parisons (MANOVA) of the four Antarctic notothenioid
families (Table 2). Wilk’s k was largest for comparisons
of Nototheniidae with all other families (k > 0.91;
Table 2), and lower values were found for comparisons

13C (‰)15N (‰)Time (Ma) δδ
6 8 10 12 14 16–28 –26 –24 –22 –2060 50 40 30 20 10 07080
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Fig. 3 Left: Time-calibrated phylogeny based on codon-specific partition, inferred with Bayesian inference. Time axis is given in mil-
lion years ago and nodes labelled A-I are mentioned in the text. Grey node bars indicate upper and lower 95% HPD. All species are
coloured according to family: brown = non-Antarctic species, green = Nototheniidae, yellow = Artedidraconidae, orange = Bathydra-
conidae and red = Channichthyidae. Right: Boxplot of stable isotope values of all included notothenioids. Representative habitus are
illustrated at the right, from top to bottom: Aethotaxis mitopteryxd, Dissostichus mawsonid, Lepidonotothen nudifronsd, Lepidonotothen lar-
senid, Trematomus tokarevid, Gobionotothen gibberifronsd, Notothenia rossiib, Pogonophryne barsukovic, Gymnodraco acuticepsa, Pseudochaenich-
thys georgianuse, Chionodraco rastrospinosuse and Chaenocephalus aceratuse. aBoulenger (1902); bDeWitt et al. (1990); cEakin (1990);
dHureau (1985a); eHureau (1985b).
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Fig. 4 Scatter plot of carbon and nitrogen isotopic values.
Grey bars indicate 95% confidence intervals. All species are
coloured according to family (brown: non-Antarctic species,
green: Nototheniidae, yellow: Artedidraconidae, orange: Bathy-
draconidae, red: Channichthyidae), and strokes indicate corre-
sponding lifestyle [blue = pelagic, benthopelagic, semipelagic
and epibenthic; brown = benthic; and semicircles when refer-
ences (Table 1) disagree].
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including the lesser-represented families Artedidraconi-
dae and Bathydraconidae (k > 0.68). Notably, within-
family variation resulted mostly from interspecific varia-
tion, instead of intraspecific variation, and closely
related species with small intraspecific variation could
be found at both ends of the ranges (e.g. T. nicolai and
Lepidonotothen nudifrons; Fig. 3).

Using the DTT method, we assessed how the stable
isotope space (as a proxy for ecological niche space)
used by the whole clade was subdivided by smaller
and smaller subclades as the radiation proceeded. We
find positive deviations from the averaged neutral-evo-
lution BM model, indicating larger overlap in niche
space between subclades than would be expected if
evolution proceeded neutrally (Fig. 5). This result was
found to be robust against phylogenetic uncertainty and
intraspecific variation by visual inspection of repeated
DTT analyses.

Discussion

Phylogenetic relationships

Previous molecular phylogenetic analyses of nototheni-
oids were based on mitochondrial DNA sequences
(Bargelloni et al. 2000; Stankovic et al. 2002; Near 2004;
Near et al. 2004), on a combination of mtDNA with a
single nuclear gene (Near & Cheng 2008) or on morpho-
logical characters in addition to molecular data (Derome
et al. 2002; Sanchez et al. 2007). The family-level phy-
logeny of notothenioids is thus relatively well estab-
lished. Several questions remain, however, such as the
position of the genus Gobionotothen (Near et al. 2004;
Sanchez et al. 2007; Near & Cheng 2008) or whether
Bathydraconidae are mono- or paraphyletic (e.g. Der-
ome et al. 2002; Near & Cheng 2008).

In agreement with most previous studies (e.g. Near
2004; Near & Cheng 2008), our results support para-
phyly of the family Nototheniidae. The low support val-
ues at the beginning of the Antarctic diversification are
characteristic for rapid diversifications. Consequently,
the basal position of D. mawsoni and the sister species
relationships of G. gibberifrons and Pleuragramma ant-
arcticum remain questionable. As in previous studies
(Near 2004; Near & Cheng 2008), the three neutrally
buoyant species A. mitopteryx, D. mawsoni and P. ant-
arcticum diverged early within the Antarctic clade but
did not cluster together. Phylogenetic relationships of
the two genera Notothenia and Lepidonotothen are consis-
tent with former studies (Bargelloni et al. 2000; Near &
Cheng 2008). Also, the topology of the nototheniid sub-
family Trematominae agrees with previous findings
(Sanchez et al. 2007; Kuhn & Near 2009), except for
T. tokarevi and T. nicolai, which appeared at basal
positions in the phylogeny based on codon
position–specific substitution models (Fig. 2, Fig. S1,
Supporting information). The early split of the two
included bathydraconid species relative to the diver-
gence between Bathydraconidae and Channichthyidae

Table 2 Pairwise niche overlap com-
parisons for the four Antarctic notothe-
nioid families, performed with MANOVA

(Wilk’s k)

Family 1 Family 2 Wilk’s k

Artedidraconidae Nototheniidae 0.936
Lepidonotothen–Trematomus clade 0.791

Bathydraconidae Nototheniidae 0.913
Lepidonotothen–Trematomus clade 0.818

Channichthyidae Nototheniidae 0.930
Lepidonotothen–Trematomus clade 0.932

Artedidraconidae Bathydraconidae 0.681
Artedidraconidae Channichthyidae 0.629
Bathydraconidae Channichthyidae 0.781
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Fig. 5 Disparity-through-time plot for the stable isotopic sig-
natures of Antarctic notothenioid fishes and Brownian motion
simulations of character evolution. Time axis is given in mil-
lion years ago.
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could indicate paraphyly of the former, as was con-
cluded in previous studies (e.g. Derome et al. 2002;
Near et al. 2004; Near & Cheng 2008). Resulting support
values within the channichthyids were high, and the
recovered topology was in complete agreement with
the study of Derome et al. (2002). The three genera
Champsocephalus, Neopagetopsis and Pseudochaenichthys
seem to be well established as the most basal channich-
thyids (Chen et al. 1998; Near et al. 2003). In disagree-
ment with former findings, C. rastrospinosus and
Chaenodraco wilsoni did not cluster monophyletically
(Chen et al. 1998). Near et al. (2003) also recovered
these two species as paraphyletic but placed Chaenoceph-
alus aceratus as the sister taxon to the genera Cryodraco,
Chaenodraco and Chionodraco, which disagrees with our
findings. Near & Cheng (2008) determined C. aceratus
as the closest related species of C. rastrospinosus.

Inferred split dates (Fig. 3) roughly agree with those
found by Near (2004) and Matschiner et al. (2011):
Divergence estimates for the Lepidonotothen–Trematomus
clade and the high-Antarctic clade were 12.0 (95% HPD
16.4–7.9) Ma and 18.6 (95% HPD 24.0–13.4) Ma, respec-
tively, while Near (2004) reported them to be
14 ± 0.4 Ma and Matschiner et al. (2011) found these
splits at 10.3 (95% HPD 15.2–6.1) Ma and 14.7 (95%
HPD 20.0–9.9) Ma. According to our estimates, the radi-
ation of the Channichthyidae began 7.7 (95% HPD
10.6–5.0) Ma ago, in good agreement with the estimates
of Near (2004) (8.5 ± 0.3 Ma) and Matschiner et al.
(2011) (6.2 Ma; 95% HPD 9.4–3.4 Ma).

Foraging ecology of notothenioids

So far, it has been shown that some particular feeding
strategies are poorly represented or even absent in noto-
thenioids, such as active skeleton-breaking predation
(Clarke et al. 2004) or planktivory (Eastman & Grande
1989; Eastman 1993). The latter is probably due to
restricted phytoplankton production during the austral
winter (Clarke et al. 2004). The drawback of traditional
dietary proxies (stomach content analyses and foraging
observations) is that they only captures a snapshot of
food uptake. Contrarily, SIA provides time-integrated
information on the feeding ‘ecology’ for a period of
weeks to years (McIntyre & Flecker 2006). Isotopic sig-
natures could theoretically be influenced by geographic
differences, sampling season and the age of sampled
individuals, especially when ontogenic shifts occur in
the investigated species. However, our sampling design
accounted for these potential problems, as only adult
specimens were collected, and all expeditions took
place during austral summers. Also, most species were
collected at the same two sampling locations, AP and
SO, and populations from these two sites did not differ

in isotopic signatures. Thus, the observed interspecific
differences suggest ecological specialization rather than
effects of geographical distribution or life history traits.

Our SIA data confirm that notothenioids occupy a
wide variety of ecological niches (Figs 3 and 4). Com-
paratively high d15N values suggest that most investi-
gated species reside at a high TL and may be
considered tertiary consumers (see also Dunton 2001;
Pakhomov et al. 2006). The wide range of the carbon
stable isotope signatures reflects the notothenioids’ vari-
ety in habitats along the benthic-pelagic axis (Fig. 4).
However, our results are only partly congruent with
the lifestyles and feeding reports based on stomach con-
tent analyses (Fig. 4, Table 1, Table S3 and Data S1,
Supporting information).

At the family level, Nototheniidae are – in terms of
habitat and feeding strategies – the most diverse clade
among Antarctic notothenioids (La Mesa et al. 2004; this
study) and include plankton, nekton and benthos feed-
ers, as well as species that combine several feeding
modes (Gröhsler 1994). The five included Trematomus
species were differentiated in both isotopic signatures,
thus indicating trophic niche separation (see also Bren-
ner et al. 2001). Artedidraconids and bathydraconids
represent the most benthic families among nototheni-
oids (Fig. 4; Olaso et al. 2000; La Mesa et al. 2004).
Their d15N values suggest feeding habits at higher TL
(Olaso et al. 2000; Jones et al. 2009). The well-studied
channichthyids clustered into three groups according to
their diet (Fig. 4: C. wilsoni, N. ionah, C. rastrospinosus
and C. gunnari at low TL; P. georgianus and Cryodraco
antarcticus at intermediate TL; and C. aceratus at high
TL; see also Kock 2005). Carbon signatures indicated a
rather pelagic lifestyle for most channichthyid species,
with the exception for C. aceratus, which we can classify
as benthic top predator, in agreement with previous
findings (Kock 2005; Reid et al. 2007).

The DTT plot (Fig. 5) indicates larger overlap of
subclades in niche use than expected from a model of
neutral evolution. This is characteristic for adaptive
radiations (Harmon et al. 2003; Gonzalez-Voyer et al.
2009) and differs from patterns of putative nonadaptive
radiations, which show a negative deviation from the
averaged neutral-evolution BM model (e.g. Rowe et al.
2011). Taking into account the considerable variation in
stable isotope signatures found in notothenioids as a
whole (Fig. 4) – basically ruling out stasis in the evolu-
tion of niche use – as well as the robustness of this pat-
tern against intraspecific variation, these results suggest
convergent evolution in niche use between species of
notothenioid subclades, especially between those clades
separating around 20 Ma (Figs 3 and 5). This empha-
sizes the importance of ecological niche differentiation
in the adaptive radiation of notothenioids.
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Adaptive radiation and ecological diversification
in notothenioids

Our integrative analyses, combining both the phyloge-
netic relationships and the isotopic signatures of 25 not-
othenioid species, reveal that ecological diversification
into overlapping feeding niches has occurred multiple
times in parallel in different notothenioid families
(Figs 3 and 5). Using carbon and nitrogen stable isotope
ratios as indicators of TL, feeding strategy and macro-
habitat, we find great variation within, and substantial
overlap between the more basal nototheniids and the
derived channichthyids. The representatives of the ben-
thic artedidraconids and bathydraconids also overlap
and cluster at high TLs and d13C values. Our results
further confirm partitioning of habitat and trophic
resources within notothenioid fishes, indicating that
diversification along the benthic–pelagic axis and to dif-
ferent TLs took place independently in at least two of
five notothenioid families of the Antarctic clade (Noto-
theniidae and Channichthyidae; Fig. 3 and Table 2).

Convergent diversification in habitat and trophic ecol-
ogy suggests interspecific competition and is a charac-
teristic of adaptive radiations (e.g. Losos 1995; Schluter
2000). For example, Anolis lizards of the Caribbean have
independently evolved four to six so-called ecomorphs
on each of the four large islands of the Greater Antilles,
including species specialized to live on grass, twigs,
trunks and tree crowns. Variation in limb lengths of an-
ole ecomorphs supports these different lifestyles, so that
e.g. the trunk-ground ecomorph possesses relatively
long legs adapted to running and jumping on broad
surfaces, while the twig ecomorph has short legs and
moves slowly on narrow surfaces (Losos 2009). In this
context, diversification of notothenioids along the ben-
thic-pelagic axis, as evidenced by their isotopic compo-
sition, and the respective adaptations in buoyancy
(Eastman 1993) can be considered analogous to the Ano-
lis diversification along the ground-tree axis. The noto-
thenioid adaptive radiation shows further analogies to
that of Caribbean anoles in terms of species richness
(both around 120 species) and age (about 24 and 15–
66 Ma, respectively) (Fig. 3; Eastman 2005; Nicholson
et al. 2005; Losos 2009; Matschiner et al. 2011). Not all
descendents of the Anolis radiation remained within the
confined area of the radiation (Nicholson et al. 2005),
and neither did the notothenioids: Notothenia angustata,
N. microlepidota and the genus Patagonotothen secondar-
ily escaped Antarctic waters and occur in New Zealand
and South America (Eastman 2005). Moreover, both
radiations were probably triggered by key innovations:
subdigital toepads support the particular arboreality of
Anolis lizards, whereas antifreeze glycoproteins in blood
and tissues allow notothenioid survival in ice-laden

Antarctic waters (Chen et al. 1997; Losos 2009; Matsch-
iner et al. 2011).

Compared to another well-studied adaptive radiation,
that of cichlid fishes in East African lakes, the rate at
which lineage formation seems to have occurred is
much smaller in Antarctic notothenioids. In the Great
Lakes of East Africa, cichlid fishes have diversified into
at least 1500 species that differ greatly in naturally and
sexually selected traits, including body shape, mouth
morphology and colouration (Salzburger 2009). Com-
parison of cichlid species flocks between East African
lakes, as well as mathematical models, have shown that
larger habitats effectuate higher diversification rates, as
they provide greater habitat heterogeneity and facilitate
isolation by distance (‘area effect’; Salzburger & Meyer
2004; Gavrilets & Vose 2005; Seehausen 2006). Different
adaptive radiations may not be directly comparable as
they depend on many ecological, genetic and develop-
mental factors, with an important contribution of histor-
ical contingencies (Gavrilets & Losos 2009). Cichlids are
known for their philopatry and low dispersal abilities
(Danley & Kocher 2001; Salzburger & Meyer 2004),
whereas most notothenioids have prolonged pelagic lar-
val stages, enhancing long-range migration (Eastman
1993). Notothenioid populations are characterized by
fragmented habitat, historical demographic fluctuations
(Patarnello et al. 2011) and the absence of genetic struc-
turing over large distances (Matschiner et al. 2009; and
references therein), whereas many cichlid species posses
significant population structuring even on extremely
small scales (e.g. Arnegard et al. 1999; Rico & Turner
2002). Genetic differentiation over small scales has
rarely been found in notothenioids (but see Clement
et al. 1998). Eastman & McCune (2000) suggested that
the smaller species number of notothenioids, compared
with cichlid species flocks, could be explained by the
absence of certain prime inshore habitats in the South-
ern Ocean. Alternatively, the notothenioid adaptive
radiation may not yet have entered its final stage,
namely the diversification with respect to communica-
tion. Streelman & Danley (2003) suggested a three-stage
model of adaptive radiation (see also Danley & Kocher
2001), in which diversification first occurs with respect
to macrohabitats, then with respect to microhabitats
and finally with respect to communication (e.g. mating
traits such as colouration; see also Gavrilets & Losos
2009). Full species richness would only be achieved
through this final step. Streelman & Danley (2003) fur-
ther suggested that divergence of habitat and trophic
morphology is driven by natural selection, whereas
diversification along the axis of communication is
forced by sexual selection. It is as of yet unclear
whether the radiation of notothenioids followed discrete
stages. Here, we provide conclusive evidence that the
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species are separated along the benthic-pelagic axis (i.e.
according to macrohabitats; Figs 3 and 4) and probably
also as a function of bottom topography and sediment
types (Kock & Stransky 2000). Much less is known
about microhabitat diversification, although our data
suggest that closely related species do differ with
respect to foraging strategies (e.g. genera Lepidonotothen
and Trematomus; Figs 3 and 4). Recent evidence further
indicates the possibility of divergence along Streelman
and Danley’s axis of communication, as egg guarding
and parental care were observed in all major nototheni-
oid lineages except within the Artedidraconidae (Kock
et al. 2006; Barrera-Oro & Lagger 2010 and references
therein).

On the other hand, because of the paucity of the
Antarctic fossil record, it cannot be excluded that the
notothenioid radiation has already surpassed its maxi-
mum species richness. It is an important characteristic
that young adaptive radiations often ‘overshoot’ in
terms of species number and that, generally, niche fill-
ing causes declining speciation rates (e.g. Seehausen
2006; Gavrilets & Losos 2009; Meyer et al. 2011). That
notothenioids already underwent periods of ‘over-
shooting’ and niche filling could possibly explain the
smaller diversity of Notothenioidei compared to the
younger cichlid radiation in the East African Lakes.
However, in this case, an early burst of diversification
should have left its footprint in a ‘bottom-heavy’ phy-
logeny (Gavrilets & Vose 2005). A more extensive
study, including many more representatives of the not-
otheniods, would be necessary to reconstruct the suc-
cession of their adaptive radiation.
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