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Species Tree Inference with SNP Data

Michael Matschiner

Abstract

While the inference of species trees from molecular sequences has become a common type of analysis in
studies of species diversification, few programs so far allow for the use of single-nucleotide polymorphisms
(SNPs) for the same purpose. In this book chapter, I discuss the use of the Bayesian program SNAPP, which
infers the species tree by mathematically integrating over all possible genealogies at each SNP. In particular,
I focus on a molecular clock model developed for SNAPP, allowing the inference of divergence times
together with the species tree topology and the population size, directly from SNP datasets in variant call
format. With the growing availability of SNP datasets for multiple closely related species, this approach is
becoming increasingly relevant for the reconstruction of the temporal framework of recent species
diversification.
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1 Introduction

Genetic data have long been used to infer relationships among
individuals, populations, and species. Traditionally, DNA fragments
were sequenced for certain markers and aligned to each other, and
the resulting multiple sequence alignment was used to deduce
relationships based on pairwise distances, parsimony, or the likeli-
hood of the alignment under certain models of sequence evolution.
When the same set of taxa have been sequenced for multiple mar-
kers, a common approach has been to join—concatenate—the
multiple sequence alignments for these markers into a single align-
ment before the inference. However, investigations motivated by
the growing number of multimarker datasets have identified impor-
tant issues with this approach. Based on simulations, Kubatko and
Degnan [1] demonstrated that under certain conditions, concate-
nation of alignments can lead to the inference of incorrect relation-
ships among species that even receive greater support with
increasing size of the dataset. Their conclusion has since been
corroborated by several studies [2–4], including a mathematical
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proof of the statistical inconsistency of concatenation [5]. More-
over, while the inconsistency affects the estimated topology of the
species tree only under certain conditions, the estimates for the
lengths of the tree’s branches are almost certainly affected by
concatenation [6, 7]. This is particularly problematic when the
species tree is time calibrated and branch lengths are used as a
measure of the amount of time that passed between speciation
events.

The underlying cause for the inconsistency resulting from con-
catenation is the fact that the true genealogies of markers may differ
from each other and also from the true species tree, due to recom-
bination. To account for this variation among marker genealogies
in the estimation of the species tree, the multispecies coalescent
(MSC) model has been developed [8] and implemented in a grow-
ing number of inference tools [9–14]. These tools fall into two
categories where some estimate the marker genealogies jointly with
the species tree and others rely on separately estimated marker
genealogies as input. Under the assumptions of the MSC model,
which include random mating within species, the absence of gene
flow after speciation, and the absence of recombination within
markers, inference of species trees with these tools is statistically
consistent and therefore reliable [14]. Naturally, all of the assump-
tions of the MSC model may be violated by empirical systems, but
as concatenation has been argued to represent nothing else than a
particularly unrealistic special case of the MSC model [15], the use
of this model may nevertheless improve the accuracy of species tree
estimates. Of these assumptions of the MSCmodel, particularly the
last one—the absence of within-marker recombination—has been
criticized, and Springer and Gatesy [16] argued that, depending on
population sizes, time between speciation events, and recombina-
tion rates, within-marker recombination can change the true gene-
alogy as often as every few base pairs. In such cases, inference with
the MSC model may be expected to suffer from the same problems
as concatenation [16].

One alternative application of the MSC model that is immune
to within-marker recombination is the estimation of species trees
directly from single-nucleotide polymorphisms (SNPs) instead of
marker sequences. With a length of a single base pair, recombina-
tion within a SNP is of course impossible. And while individual
SNPs do not carry enough information for the estimation of the
genealogy at the position of the SNP, this problem can be circum-
vented in two ways: In the quartet inference approach implemented
in the program SVDquartets [17], the taxon set is decomposed into
a large number of quartets (combinations of four species), the
support for alternative quartet topologies is assessed, and quartet
topologies are finally reassembled into the estimated species tree
topology. The second possibility to avoid the uninformative genea-
logies of individual SNPs is implemented in SNAPP [18], which
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integrates over all possible genealogies at each SNP mathematically
rather than inferring them. This approach is conceptually elegant,
but unfortunately comes at the cost of high computational
demand, meaning that SNAPP can usually be applied only to
comparatively small datasets of tens of species and thousands of
SNPs. In contrast, SVDquartets runs quickly enough to be applied
to hundreds of species and millions of SNPs. Besides these two
methods based on the MSC, tools that model mutation and allelic
drift instead of coalescent variation can also be applied to infer
species trees from SNP data; these tools include POMO [19] and
the recently developed Snapper [20].

Despite its limitation to smaller datasets, SNAPP is highly
useful for the inference of species trees from recently diverged
groups. As a Bayesian inference tool, SNAPP produces probabilistic
node support values that can be interpreted intuitively, and it allows
model comparisons by Bayes factors, which enables its use for
species delimitation [21]. And as simulations have shown, the
inferred species tree can be accurate and precise even when only
hundreds of SNPs are used [7]. Finally, with the molecular clock
model developed for SNAPP by Stange et al. [7], the program also
estimates population sizes and divergence times, allowing the
reconstruction of the temporal framework of species diversification.

In the rest of this chapter, I am going to focus on species tree
estimation with SNAPP based on the model of Stange et al. [7],
assuming that the reader is not only interested in the topology of
the species tree but also in the timeline of diversification. I do not
cover species tree inference with SVDquartets or species delimita-
tion with SNAPP but would like to point the readers interested in
these analysis types to the excellent tutorials that can be found
online at www.phylosolutions.com (by Dave Swofford and Laura
Kubatko) and www.evomics.org (by Adam Leaché), respectively.

2 Materials

SNAPP is available as an add-on package for BEAST 2 [22, 23];
therefore, both the BEAST 2 suite of programs and this add-on
package are required for species tree inference with SNAPP. To use
the model of Stange et al. [7] in SNAPP, the snapp_prep.rb script,
written in the Ruby programming language, is additionally
required. To apply this script, several input files, including a geno-
type data matrix, a file assigning individuals to species, a file with
age constraints, and possibly a starting tree are needed. Finally, two
more programs, Tracer [24] and FigTree are useful for post-
processing the output of SNAPP.
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2.1 BEAST 2 The BEAST 2 suite of programs includes BEAST itself, BEAUti,
LogCombiner, and TreeAnnotator. BEAST employs Markov-chain
Monte Carlo (MCMC) to infer the Bayesian posterior distribution
of phylogenetic trees and parameter estimates, under models that
are specified in input files in XML format [25]. To facilitate the
writing of XML files, BEAST is distributed together with BEAUti,
a graphical user interface program through which the model set-
tings can be selected and exported in XML format (however, the
SNAPPmodel of Stange et al. cannot be specified through BEAUti;
see below). The user interface of BEAUti also represents an easy
way to access the BEAST 2 Package Manager, through which
add-on packages like SNAPP can be installed. The program Log-
Combiner can be used to merge posterior distributions from mul-
tiple replicate BEAST analyses into a single file, and TreeAnnotator
serves to generate summary trees from the posterior tree distribu-
tion. The BEAST 2 suite of programs for Mac OS X, Linux, or
Windows can be obtained freely from https://www.beast2.org. All
BEAST 2 programs are written in the Java programming language
and thus Java is required to run them. Therefore, either the Java
Development Kit (version 8 or higher) should be installed (e.g.,
from https://adoptopenjdk.net) or one of the BEAST 2 versions
bundled with Java should be selected from the BEAST 2 website
(https://www.beast2.org). The version of Java installed can be
identified on the command line with java -version; version number
1.8 or higher corresponds to Java Developer Kit version 8 or
higher.

2.2 SNAPP Owing to SNAPP’s integration into BEAST 2, its model settings
can be defined with BEAUti, its analyses use the MCMCmachinery
of BEAST, and postprocessing can be performed with the Log-
Combiner and TreeAnnotator tools distributed with BEAST 2.
The model applied in SNAPP, however, is rather different from
those of other BEAST analyses, due to its use of SNP markers
instead of sequence alignments and the mathematical integration
over all possible genealogies at each SNP. The SNAPP add-on
package can be installed with the BEAST 2 Package Manager,
accessed through BEAUti as shown in Fig. 1.

2.3 snapp_prep.rb
and add_theta_to_log.
rb

While the settings for most SNAPP analyses can be defined with
BEAUti’s graphical user interface, this is not the case for analyses
with the molecular clock model of Stange et al. [7]. To implement
this model, the XML file for SNAPP needs to be written differently,
and one convenient way in which this can be done is the snapp_-
prep.rb Ruby script. The script can be obtained from GitHub at
https://github.com/mmatschiner/snapp_prep. A second Ruby
script, named add_theta_to_log.rb, is useful for postprocessing of
SNAPP results and available from the same repository. To run both
scripts, the Ruby programming language (version 2 or higher) is
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required. The language is included with Mac OS X and Linux
operating systems but may first need to be installed on Windows
systems. All installation options are described on https://www.
ruby-lang.org/en/documentation/installation/. The installed
version of Ruby can be identified on the command line with ruby
--version.

2.4 Genotype Data
Matrix

One of the inputs required by snapp_prep.rb to write an XML file
for SNAPP is a matrix containing diploid genotype data. This
matrix can be provided in Phylip format [26] or in uncompressed
variant call format (VCF), the latter of which is probably more
convenient for most users as genotyping data is most commonly
stored in VCF files. As SNAPP can only handle biallelic SNPs, all
indels, multiallelic SNPs, and monomorphic sites should first be
removed from the matrix. To further comply with SNAPP’s expec-
tation of SNPs that are unlinked [18], it may be advisable to thin
the matrix so that no two SNPs are within a short distance of each
other on the same chromosome (this can also be done with snapp_-
prep.rb; see below). Which minimum distance should be chosen
may depend on the genome size and the target number of SNPs for
the analysis, but minimum distances of at least thousands of base

Fig. 1 Screenshot of the BEAUti graphical user interface with the BEAST 2 Package Manager. The Package
Manager can be opened by clicking “Manage Packages” in BEAUti’s “File” menu. SNAPP can then be installed
by selecting the package as in the screenshot and clicking “Install/Upgrade” at the bottom of the Package
Manager window
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pairs (bp) may be sensible (that said, the effect of linkage between
some SNPs is likely negligible when the matrix includes thousands
of SNPs). SNPs with missing data can be used by SNAPP as long as
genotypes are known for at least one individual per species; SNPs
for which this is not the case will be recognized by the snapp_prep.
rb script and excluded from the produced XML file. Importantly,
the genotype matrix should not be filtered by minor allele count or
frequency as this filter would introduce bias to the estimated
lengths of terminal branches of the species tree. Instead of filters
on minor allele count or frequency, filtering for high genotype
quality is recommended. The data matrix should not include gen-
otypes for large numbers of individuals per species as these would
primarily extend SNAPP’s run times without adding much infor-
mation to the analysis. As a rule of thumb, a total number of 20–30
(diploid) individuals across all species and between 1000 and
10,000 SNPs constitute a suitable dataset size, but if SNAPP’s
results should turn out to be too uninformative or if the run
times are too long, these numbers should be adjusted. Note that
SNAPP can provide good species tree estimates even when only a
single (diploid) individual is used per species [7].

2.5 Species Table SNAPP requires information assigning individuals to species, and
to write this information into SNAPP’s XML file, the snapp_prep.
rb script expects an input file with a two-column table. The file
should be in plain text format, the first column should list species
IDs, and the second column should list the corresponding IDs of
individuals. These individual IDs should exactly match those used
in the genotype data matrix. The two columns can be either tab- or
space-delimited. The table may include a header row; if it does, the
row content should be “Species” in the first column and “Speci-
men,” “Specimens,” “Sample,” or “Samples” in the second col-
umn; these keywords are case-insensitive. An example of a species
table, taken from a study by Barth et al. [27], is shown in Table 1.

2.6 Age Constraints In sequence-based analyses of divergence times, phylogenies are
usually time calibrated either by specifying an estimate of the muta-
tion rate or by placing age constraints on one or more divergence
events in the tree. In SNP-based species tree inference with SNAPP,
however, mutation rates applying to the dataset can usually not be
estimated a priori because the SNP data are subject to ascertain-
ment bias as only variable sites are included [7]. Thus, the better
approach for time calibration of SNP-based species trees is to
specify age constraints for divergences within the tree. The infor-
mation for these constraints may come from the fossil record or
from previous phylogenetic studies, but either way, some age infor-
mation must be available for at least one divergence, otherwise the
molecular clock model of Stange et al. [7] cannot be used. If the
user should not be aware of published age estimates for the group
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of study, it may be worth checking whether some of the recently
published large-scale time-calibrated trees [28–32] contain taxa
from the study group, which could allow the transfer of age infor-
mation. If there really is no published age estimate for any diver-
gence event within the study group, a possible solution could be to
extend the dataset by adding a closely related species for which a
divergence time estimate is available. If this is also not feasible,
perhaps because samples of outgroups are not available or too
distantly related to map to the same reference, a last option could
be to also generate mitochondrial sequence data for some of the
species in the dataset and estimate their divergence times based on
an assumed mitochondrial substitution rate. This would need to be
done a priori in a separate phylogenetic analysis, for example with
BEAST 2, and the uncertainty in the assumed substitution rate
should be accounted for.

Table 1
Example of a species table assigning individuals to species, taken from Barth et al. [25]

Species Specimen

mar BOU15023

mar BOU15010

mar SAW16055

mar BOU15014

mar SAW16054

meg VAG12056

meg SAW17B10

meg VAG12041

meg BOU15027

meg BOU15030

obs VAG12061

obs SAW16038

obs SAW16042

obs SAW16041

obs SAW16032

bic JAV11007

bic JAV11015

bic JAV11016

bic JAV11022

mos REU03026
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Once a divergence event is identified for which external age
information is available, this age information needs to be expressed
in the form of a prior probability distribution (simply called “prior”
hereafter). The molecular clock model for SNAPP allows the same
types of priors that are used by BEAST 2 more generally, including
uniform, normal, lognormal, exponential, and gamma distribu-
tions. Each of these distributions are defined by a set of parameters,
such as the lower and upper boundaries in the case of the uniform
distribution or the mean and the standard deviation in the case of
the normal distribution. In addition, “offsets” can be used to shift
the entire distribution without modifying its shape. A good intro-
duction to the various priors available in BEAST 2 and SNAPP is
given in Drummond and Bouckaert [23]. For age constraints based
on previous studies, the most suitable prior types are usually normal
or lognormal distributions. If, for example, a previous study had
found that the group for which SNP data are analyzed began to
diverge around 10 million years ago (Ma) with a 95% confidence
interval spanning from 9 to 11 Ma, a normal distribution with a
mean of 10 and a standard deviation adjusted so that 95% of the
probability mass lie between 9 and 11 would be a suitable prior for
the age of the root of the SNP-based species tree. If, however, the
previously reported confidence interval would be skewed with
respect to the mean estimate, which is often the case for age
estimates, a lognormal distribution could provide a better fit. For
example, when the 95% confidence interval ranges from 9 to 13Ma
and the mean age estimate is 10 Ma, a normal distribution would
not be able to accommodate the asymmetry of the estimate, but a
lognormal distribution (e.g., with an offset of 8.5, a mean of 1.5,
and a standard deviation of 0.55) could approximate it. Identifying
the distribution parameter combination that best fits published age
estimates may require some trial-and-error testing, aiming for a
distribution that approximates both the mean and the confidence
interval of the published estimate well. BEAUti’s prior preview
panel (in the “Priors” tab) may be of help for this testing, but
some example data must first be loaded into BEAUti to be able to
set an age constraint in this panel (Fig. 2).

With the divergence event identified and the type of prior and
the distribution parameters selected, an age constraints input file
for snapp_prep.rb can be written. Based on this file, the script can
then translate the constraint to XML format and include it in the
input file for SNAPP. The format of the age constraints file for
snapp_prep.rb is relatively simple: For each constraint, a single line
with three tab- or space-delimited elements is required (see Note
1). The first of these three elements specifies the type of the prior
(normal, lognormal, uniform, or “CladeAge”; the latter type is
described in Matschiner et al. [33]), followed by comma-separated
parameter values in parentheses. For normal and a lognormal dis-
tributions, the parameters offset, mean (in real space in case of
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lognormal distributions), and standard deviation are expected,
while for uniform distributions, only the lower and upper bound-
aries need to be specified (see Notes 2 and 3). The second element
of the line should be either “crown” or “stem,” depending on
whether the age constraint should apply to the most recent com-
mon ancestor of the selected group (“crown”) or the divergence of
the group from its sister lineage (“stem”). The species IDs for
members of the group should be specified separated by commas
as the third element of the line; these should correspond to species
IDs used in the species table. The following examples all show valid
age constraints:

normal(0,10,0.5) crown speciesA,speciesB,speciesC

(a normally distributed constraint on the age of the most recent
common ancestor of three species with a mean of 10 and a standard
deviation of 0.5),
lognormal(8.5,1.5,0.55) stem speciesA,speciesB,speciesC

(a lognormally distributed constraint on the divergence time of
three species from their sister lineage with an offset of 8.5, a mean
of 1.5, and a standard deviation of 0.55),
uniform(10,15) crown speciesA,speciesB,speciesC

(a uniform constraint on the age of the most recent common
ancestor of three species with a lower boundary of 10 and an upper
boundary of 15).

Fig. 2 Screenshot showing BEAUti’s prior preview panel. With the chosen parameters, the lognormal prior has
a mean of 10 (the sum of the offset, 8.5, and the distribution mean, 1.5) and 95% of the prior probability fall
within the range from 8.94 to 12.3, the 2.5% and 97.5% quantiles
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In Barth et al. [27], a lognormal distribution was used to
constrain the age of the most recent common ancestor of five
species with an offset of 0, a mean of 13.76, and a standard devia-
tion of 0.1, according to an earlier study based on mitochondrial
sequences [34]:

lognormal(0,13.76,0.1) crown mar,meg,obs,bic,mos

Further information on constraint specification can be found in
file example.con.txt, which is part of the snapp_prep GitHub repos-
itory (https://github.com/mmatschiner/snapp_prep).

2.7 Starting Tree To initiate the MCMC chain, BEAST requires a starting tree.
Usually, BEAST attempts to generate this starting tree itself; how-
ever, particularly when multiple age constraints are used, BEAST
may not be able to produce a starting tree that is compatible with all
constraints. If this is the case, BEAST immediately stops with an
error message that includes the line “Fatal exception: Could not
find a proper state to initialize” and also the line “P(prior) ¼-
-Infinity (was -Infinity)”. When this problem occurs, it can be
fixed by providing a starting tree in Newick format (http://
evolution.genetics.washington.edu/phylip/newicktree.html) that
is compatible with all specified constraints. To be readable by
snapp_prep.rb, the starting tree should be written to a file that
contains only a single line and only the tree in Newick format on
this line (seeNotes 4 and 5). Note that besides the requirement that
the tree should be compatible with all constraints, the topology and
branch lengths chosen for the starting tree should not have any
effect on the outcome of the SNAPP analysis and can therefore be
chosen arbitrarily. For the dataset used by Barth et al. [27], a
suitable starting tree would be the following.

((((mar:3,meg:3):3,obs:6):3,bic:9):3,mos:12);

To verify whether the starting tree is written as intended, the
program FigTree (see below) can be used to visualize it.

2.8 Tracer Tracer [24] is a very convenient and easy-to-use graphical user
interface program for the assessment of MCMC stationarity and
convergence. The program is available for Mac OS X, Linux, or
Windows operating systems from GitHub at https://github.com/
beast-dev/tracer/releases. While the instructions in this book
chapter assume that Tracer is used to assess stationarity and conver-
gence, it is worth pointing out the coda R package [35] as a useful
alternative that also implements many of the functions available in
Tracer.

2.9 FigTree FigTree is a versatile graphical user interface program for the visu-
alization of phylogenetic trees in Newick format. The program is
available for Mac OS X, Linux, or Windows systems from GitHub
at https://github.com/rambaut/figtree/releases.
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3 Methods

3.1 Model To reduce the computational demand of SNAPP, the method for
divergence time estimation developed by Stange et al. [7] imple-
ments a model that is even more simplistic than the one used in
standard SNAPP analyses. As in other SNAPP analyses, the Yule
model [36] of lineage diversification is used, meaning that specia-
tion events are assumed to occur with a constant rate per lineage
and extinction is assumed to be absent. Also in common with other
SNAPP analyses is the model assumption of a constant mutation
rate that is identical in all lineages. While both assumptions are
clearly violated by most or all empirical systems, it may be argued
that at least within a system undergoing rapid diversification, the
effects of extinction and rate variation may be small enough to be
ignored. Going beyond the simplicity of standard SNAPPmodels is
the assumption made in the model of Stange et al. [7] that all
species have exactly the same population size. Even for recently
diverged lineages, this assumption is rather unrealistic [12, 37], but
as ancestral population sizes are inherently difficult to estimate and
SNAPP analyses would otherwise hardly be possible for datasets of
more than ten species, the assumption may nevertheless often be
justified. Further reduction of model complexity is achieved by
linking the forward and reverse mutation rates, which is not the
case in standard SNAPP analyses.

Besides these model simplifications, the method of Stange et al.
differs from standard SNAPP analyses also in the choice of priors.
To both of the two parameters speciation rate (λ) and clock rate (μ),
a scale-independent one-over-x prior is applied. The advantage of
this is that the prior works equally well with young or old groups of
species and no group-specific adjustments from the user are
required. This is also the case for the prior on the population size
parameter ϴ, for which a very wide and therefore essentially unin-
formative uniform distribution is used. The model developed by
Stange et al., including the above-described priors, is automatically
selected when the XML file for SNAPP is written with the snapp_-
prep.rb script. For most users of divergence time estimation with
SNAPP, no further modifications to the XML file will be necessary.

3.2 Generating the
XML File with
snapp_prep.rb

The minimum input required by snapp_prep.rb are three files: the
one with the genotype data matrix, the file with the species assign-
ment table, and the file with age constraints. If these are named
matrix.vcf, species.txt, and constraints.txt, an XML file can be
generated with snapp_prep.rb using the command:

ruby snapp_prep.rb -v matrix.vcf -t species.txt -c con-

straints.txt
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This command would use all biallelic SNPs with sufficiently
complete data, it would specify the default run length of 500,000
MCMC iterations, it would write an XML file with the default
name snapp.xml, and it would set the output files of the SNAPP
analysis to be named snapp.log and snapp.trees. A different number
of MCMC iterations could be specified with the -l option (e.g., -l
100000), and smaller numbers of iterations might be advisable in
initial analyses to explore the run time per iteration and how fast the
MCMC chain approaches stationarity. The name of the XML file
could be changed with the -x option, and different names for
SNAPP’s output files could be set with the -o option. A file with
a starting tree could additionally be provided with the -s option,
which may be helpful when BEAST is unable to generate a suitable
starting tree itself. An overview of all available options can be
displayed with the command:

ruby snapp_prep.rb -h

Some of the further options may be useful:
The relative weight of topology operators, and with it the

frequency at which SNAPP attempts to change the tree topology
duringMCMC, can be changed with the -w option. The default for
this option is 1; with values smaller or larger than 1, SNAPP will
attempt to change the topology less frequently or more frequently,
respectively, than other parameters. This option may be particularly
useful when the user would like to fully fix the tree topology to the
topology of a starting tree, which can be done by setting the relative
weight to zero with -w 0.

To gain better control of the computational demand of the
SNAPP analysis, a maximum number of SNPs can be specified with
the -m option. When this option is used, the specified number of
SNPs will be randomly selected from all those that are suitable for
SNAPP. Similarly, a minimum distance between SNPs can be set
with the -q option to reduce the potential effect of linkage among
sites.

The effects of these two options are identical to those achieved
by reducing and thinning the input VCF file a priori, but it may be
more convenient to apply these filters with snapp_prep.rb because
other tools cannot easily discriminate between SNPs suitable for
SNAPP (e.g., those that have data for at least one individual per
species) and those that will need to be excluded anyway.

While rates of mutations are well known to vary depending on
the types of nucleotides that are exchanged [38], SNAPP does not
model rate variation. One practical way to account at least partially
for varying rates among nucleotide pairs is to reduce the genotype
matrix to only transitions or only transversions, given that most rate
variation is usually partitioned between these classes rather than
within them [39]. This reduction can be done with the -i option to
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include only transitions or with the -r option to include only
transversions. When unsure which of the two classes of mutations
to use, two separate XML files could be produced and SNAPP
analyses could be performed separately with both files, allowing
an assessment of the robustness of the results to these data subsets.

3.3 MCMC
with BEAST

To perform SNAPP analyses with the XML file written with
snapp_prep.rb, this file needs to be provided as input to BEAST.
This can be done either using the command-line version of BEAST
or its graphical user interface. If the XML file is named snapp.xml
and BEAST is located in /Applications/BEAST/, the command-
line version can be used to start MCMC with the command:

/Applications/BEAST/bin/beast snapp.xml

As SNAPP analyses can be parallelized very efficiently if multi-
ple processors are available, the use of threading is recommended.
On the command line, the use of multiple threads can be specified
with the -threads option. For example, four threads can be used
with the command:

/Applications/BEAST/bin/beast -threads 4 snapp.xml

The graphical user interface of BEAST can be launched by
double-clicking on the program icon, which should open two
windows as shown in Fig. 3. The input file can then be loaded by
clicking on “Choose File . . .”, the number of threads can be
selected from the drop-down menu next to “Thread pool size,”
and the MCMC chain can be started by clicking “Run.”

During MCMC, BEAST’s screen output shows values in eight
columns that represent the current MCMC iteration, the posterior
probability for this iteration, the cumulative effective sample size
(ESS; see below) for the posterior probability, and the likelihood,
the prior probability, the tree height (the age of the root of the
tree), and the clock rate for this iteration. The last column at first
only shows “--” but this is replaced after a certain number of
iterations with an estimate of the required run time for one million
iterations, as shown in Fig. 4.

It is worth following the screen output for some time. If the
ESS value for the posterior increases above 200, the MCMC chain
may have reached stationarity and a further extension to the chain
may not be required. To verify stationarity, the output file with the
“.log” filename extension should be inspected as described in the
next section. If, on the other hand, the ESS value remains very low
for a long time, stationarity may be difficult to reach and a restart of
the analysis with a smaller dataset, or the use of a larger number of
threads, should be considered. It is not uncommon for SNAPP
analyses to require hours or days to finish, and in some cases the
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analysis may take weeks. Ultimately, whether or not the completion
of a SNAPP analysis with a given dataset is feasible may depend on
the patience of the user and the long-term access to computational
resources with multiple processors.

3.4 Assessing
Stationarity and
Convergence with
Tracer

DuringMCMC, BEASTwrites two output files with the “.log” and
“.trees” filename extensions. At the end of MCMC, these files
should each contain output describing the state of the MCMC
chain for 2000 iterations sampled at regular intervals. The output
is divided so that all model parameters except the tree and the
population size parameter ϴ are written to the file with the “.log”
extension while the tree, including branch lengths, and ϴ are
written in annotated Newick format to the file with the “.trees”
extension. To assess MCMC chain stationarity, and thus whether or
not the analysis should be extended, the file with the “.log” exten-
sion should be inspected with the program Tracer.

Fig. 3 Screenshot showing the file opening dialog of BEAST’s graphical user interface
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The many ways in which Tracer can be used to analyze MCMC
results are described well in its publication [24] and in Drummond
and Bouckaert [23]. In brief, Tracer is used to assess whether or not
the MCMC chain has run long enough to allow conclusions, to
adjust the length of the part of the MCMC chain that is considered
as burn-in, and to extract parameter estimates and their confidence
intervals. To determine that the chain was sufficiently long, statio-
narity and convergence must have been reached, indicating that the
MCMC chain has sampled from the true posterior distribution.
The first of these two criteria—stationarity—can be assumed when
trends are no longer recognizable in trace plots of the sampled
posterior probability, the likelihood, the prior probability, and all
parameter values. One such trace plot, showing samples of the
posterior probability, is illustrated in Fig. 5. Perhaps the most
important measures of MCMC stationarity are the ESS values
that are listed for posterior and prior probabilities, the likelihood,
and parameter estimates in the bottom left panel of the Tracer
window. These quantify the number of effectively independent
samples drawn from the posterior distribution and thus account
for autocorrelation in estimates sampled throughout the MCMC
chain. As a rule of thumb, all ESS values should be greater than
200 before the MCMC chain can be considered stationary, but
even larger values are preferable as they allow better estimates of
confidence intervals [23]. To point out problematic estimates,
Tracer marks ESS values smaller than 200 in red (ESS < 100) or
yellow (100 " ESS < 200).

Fig. 4 Screenshot showing the SNAPP screen output in BEAST’s graphical user interface
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Even when theMCMC chain appears stationary based on visual
inspection of trace plots and the ESS values, it may nevertheless not
sample from the true posterior distribution. This is possible when
the posterior probability surface has multiple peaks and theMCMC
chain only explored a peak that is not the highest peak overall.
While the probability surface may rarely be complex enough for
this to happen with the simple models used in SNAPP, it is impor-
tant to exclude this possibility. A good way to do so is to run
multiple replicate analyses with the same XML file and verify that
the MCMC chains in these analyses converge, meaning that they all
arrive at roughly the same estimates even though they had different
starting points (which is the case unless the same random number
seed is reused).

To verify MCMC chain convergence, the files with “.log”
extensions resulting from the multiple replicate analyses can be
loaded jointly into Tracer. Below the names of these files in the
top left panel of the Tracer window, an entry named “Combined”
should then appear. When this entry is selected, trace plots will
display the combinedMCMC chain from the multiple files (exclud-
ing the burn-in parts of the individual chains), and all ESS values
will be recalculated for the combined chain. If one or more of the
run replicates did not converge, this will be obvious from marked
steps in the trace plots and substantial decreases of ESS values.

Fig. 5 Screenshot showing the Tracer window with the trace plot of the posterior probability. Trace plots can
be displayed by selecting a statistic in the lower left panel and clicking the “Trace” button at the top right of
the window
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If MCMC chains have reached stationarity and convergence, it
may be worth optimizing the percentage of the chain that is con-
sidered as burn-in and thus excluded from the calculation of param-
eter estimates. With the default settings, the number of burn-in
samples is specified as 50,000 in the column titled “Burn-in” in the
top left panel of the Tracer window (Fig. 5), corresponding to 10%
of the default chain length of 500,000 iterations. The length of the
burn-in could be increased to, for example, 20%, by clicking on
“50000” and writing “100000” instead. Adjusting the burn-in
length is advisable if larger burn-in percentages improve the ESS
values and the visual appearance of stationarity in trace plots.

If multiple MCMC replicates were performed (and all have
converged), downstream analyses can be simplified by combining
the result files from these replicates. This can be done separately for
the files with the “.log” extension and for the files with the “.trees”
extension, using the LogCombiner tool from the BEAST 2 suite of
programs. The graphical user interface of LogCombiner can be
used intuitively to load multiple input files, specify burn-in percen-
tages for each of these, and set the name of the combined
output file.

3.5 Obtaining
Parameter Estimates
with Tracer

Besides the posterior probability, the likelihood, and the prior
probability, Tracer shows only three parameters in the lower left
panel (if the XML was prepared with snapp_prep.rb): “lambda,”
“treeHeightLogger,” and “clockRate.” Of these, “lambda” refers
to the speciation rate (λ), “treeHeightLogger” refers to the age of
the most recent common ancestor in the tree (thus, it is the sum of
multiple branch lengths rather than a parameter itself), and “clock-
Rate” refers to the rate of the molecular clock (μ). As discussed in
Stange et al., the clock rate is subject to ascertainment bias when
the dataset includes only SNPs and should not be directly inter-
preted as the mutation rate. However, as also shown in Stange et al.,
the clock rate estimate, together with the estimate for the popula-
tion size parameter ϴ, can serve to accurately estimate the effective
population size Ne, given that ϴ ¼ 4Neμg (with g being the
generation time).

To add an estimate of Ne to a new file with “.log” extension
that can be read by Tracer, the Ruby script add_theta_to_log.rb,
from the same GitHub repository as snapp_prep.rb, can be used.
This script reads the sampled clock rates from the result file with the
“.log” ending and the sampled ϴ values from the file with the “.
trees” ending, calculates Ne from these values and a user-specified
generation time, and writes a new file with the “.log” extension that
is identical to the first except that it also contains samples for ϴ and
Ne. For example, with the result files snapp.log and snapp.trees and
a generation time of 3 years, the script could be run with the
command:
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ruby add_theta_to_log.rb -l snapp.log -t snapp.trees -g 3

This command would write an output file with the default
name snapp_w_theta.log; other names could be specified with the
-o option. Opening the output file of add_theta_to_log.rb in Tracer
should show that two entries named “theta” (ϴ) and “population_-
size” (Ne) have been added to the list of parameters in the lower left
panel of the window (Fig. 6). Both of these parameters should also
be checked for stationarity, but as the estimates for ϴ are subject to
the same ascertainment bias as those for the clock rate (μ), only the
estimates for the population size should be interpreted. Selecting
“population_size” in the parameter list in Tracer and clicking the
“Estimates” button at the top center of the window should show
summary statistics for this parameter, including the mean estimate,
the standard deviation, and the 95% highest posterior density
(HPD) interval, which in Bayesian analyses serves as the confidence
interval (Fig. 6).

3.6 Generating a
Summary Tree with
TreeAnnotator

Opening the output file of SNAPP with the “.trees” extension in
FigTree allows the user to view all the trees sampled duringMCMC
one by one. Alternatively, all sampled trees could be displayed
simultaneously with DensiTree [40], another tool that is included
in the BEAST 2 suite of programs. Often, however, a single tree
summarizing the information from all sampled trees is required.

Fig. 6 Screenshot showing the Tracer window with summary statistics for the estimates of the effective
population size (Ne)
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Such summary trees can be generated with TreeAnnotator, which
identifies the most credible tree topology and representative clade
ages based on criteria selected by the user [41]. For the tree
topology, either “maximum clade credibility tree” or “maximum
sum of clade credibilities” can be chosen; these two options select
the tree topology for which either the product or the sum, respec-
tively, of all node support values is highest. The clade ages, on the
other hand, can be set either to the mean or the median of each
clade’s age in all posterior trees that contain this clade. Alterna-
tively, “Common Ancestor heights” can be chosen, which calcu-
lates clade ages from all posterior trees, not just those that contain
the clade [41]. For most species trees generated with SNAPP, these
options should have rather little effect, given that SNAPP trees are
usually well-supported and not overly species-rich. Perhaps the
most commonly used setting is to produce a maximum clade credi-
bility tree with mean node heights, which should work well for all
SNAPP trees. Besides these options, the burn-in percentage should
be specified (unless the burn-in part of theMCMC has already been
removed, e.g., with LogCombiner), and input and output file
names must be given. It is convenient to name the output file
exactly like the input tree file, except that the “.trees” file extension
is replaced with “.tre”.

3.7 Visualizing the
Summary Tree in
FigTree

After opening the summary tree in FigTree, the program has vari-
ous options to customize the tree’s visualization. These options are
accessible from the menu on the left of the FigTree window, within
several panels that can be opened by clicking on the triangles and
activated by checking the boxes next to these. Generally useful are
the following options.

• Uncheck “Scale Bar” but check “Scale Axis,” open the panel for
“Scale Axis,” uncheck “Show grid,” and check “Reverse Axis.”
This adds a time scale in units of millions of years before present.

• Check and open the “Node Labels” panel, then set the drop-
down menu next to “Display” to “posterior.” This shows the
support values for each node in the form of Bayesian posterior
probabilities (BPP).

• Check and open the “Node Bars” panel, then set the drop-
down menu next to “Display” to “height_95%_HPD”. This
adds blue bars to each node indicating the confidence interval
for its age.

After the tree visualization has been adjusted as described
above, a publication-ready figure of the species tree can be exported
in PDF format via FigTree’s “File” menu.
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4 Notes

Issues encountered by users of snapp_prep.rb are often related to
the preparation of the age constraints or species table input files.
The following points should be considered if any issues arise in the
preparation of these files:

1. If an error message or the resulting estimate of the species tree
indicate that the constraints file may not have been read prop-
erly by snapp_prep.rb, it may be worth checking that no spaces
are included at the very beginning of the line defining the
constraint. The same issue can result when the old Mac OS
9 format for line endings is accidentally used in the
constraints file.

2. When using normal prior distributions for age constraints, the
offset is redundant with the mean; thus, one of the two distri-
bution parameters can always be set to zero.

3. Normal prior distributions may in some cases not work as well
as lognormal distributions, because their tails are not bounded
in either direction and therefore they do assign a certain prior
probability to an age of zero (and even to negative ages).
Through the interaction with the priors on the speciation rate
and the population size, this may cause the MCMC chain to
move toward a tree age of zero. When this issue is encountered,
it can be fixed by replacing the normal prior distribution with a
similarly shaped lognormal distribution.

4. The individual IDs used in the species table should match those
used in the genotype data matrix exactly. No individual IDs
should be used only in one of the two files but not the other.
Similarly, the species IDs used in the species table should
exactly match those in the starting tree if a starting tree is
provided. Finally, the IDs used in the definition of age con-
straints should be species IDs, not individual IDs.

5. If a starting tree is provided, this tree should not contain nodes
with only one descendant, and no branch should be included
above the root of the tree. One way to test for unintended
nodes and branches is to open the tree in FigTree and activate
the “Node Shapes” panel, which marks all nodes with circles or
other symbols.

If any other issues should arise, I recommend that questions
related to SNAPP are posted on the BEAST user group (https://
groups.google.com/forum/#!forum/beast-users) while questions
related to snapp_prep.rb should be directed to me by email.
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