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1  | INTRODUC TION

Admixture between populations and hybridisation between species 
are common and a bifurcating tree is often insufficient to capture 
their evolutionary history (Green et  al.,  2010; Kozak et  al.,  2018; 
Malinsky et al., 2018; Patterson et al., 2012; Tung & Barreiro, 2017). 
Patterson's D statistic, first used to detect introgression between 
modern human and Neanderthal populations (Durand et al., 2011; 
Green et al., 2010), has been widely applied across a broad range of 
taxa (Fontaine et al., 2015; Kozak et al., 2018; Malinsky et al., 2018; 
Tung & Barreiro,  2017; vonHoldt et  al.,  2016). The D statistic and 
the related estimate of admixture fraction f, referred to as the f4-ra-
tio (Patterson et al., 2012), are simple to calculate and well suited 

for taking advantage of genomic-scale data sets, while being robust 
under most demographic scenarios (Durand et al., 2011).

The D and f4-ratio statistics belong to a class of methods based 
on studying correlations of allele frequencies across populations and 
were developed within a population genetic framework (Patterson 
et  al.,  2012). However, the methods can be successfully applied 
for learning about hybridisation and introgression within groups 
of closely related species, as long as common population genetic 
assumptions hold – namely that (a) the species share a substantial 
amount of genetic variation due to common ancestry and incom-
plete lineage sorting; (b) recurrent and back mutations at the same 
sites are negligible; and (c) substitution rates are uniform across spe-
cies (Patterson et al., 2012; Pease & Hahn, 2015).
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While the results of other methods such as PCA (Patterson 
et al., 2006), STRUCTURE (Pritchard et al., 2000), and ADMIXTURE 
(Alexander et al., 2009) may be hard to interpret historically, because 
they do not explicitly fit a historical model or unrealistically assume 
that all populations have radiated from a single ancestral group, 
the use of the D and f4-ratio statistics involves fitting a simple ex-
plicit phylogenetic tree model to a quartet of populations or species 
(Figure 1a, b) and provides a formal test for a history of admixture 
in that context (Patterson et al., 2012). The treemix method (Pickrell 
& Pritchard, 2012), on the other hand, can fit a complex historical 
graph model of a tree with migration edges for a data set of many 
populations, but does not provide a rigorous test for whether any 
proposed migration edges are correct (Patterson et al., 2012; Pickrell 
& Pritchard,  2012). Finally, methods based on detailed population 
genetic models, such as δaδi (Gutenkunst et al., 2009), fastsimcoal2 
(Excoffier et al., 2013), or IMa2 (Hey, 2010) can be used to infer demo-
graphic history that includes events such as population size changes, 
population splits and joins, and migration. However, these methods 
require data from multiple individuals per population or species, and, 
despite recent improvements in efficiency (Kamm et al., 2019), are 
computationally very demanding, limiting their application to a small 
number (generally < 10) of populations or species.

With more genomic data becoming available, there is a need for 
handling data sets with tens or hundreds of taxa. Applying the D and 
f4-ratio statistics has the advantage of computational efficiency and 
is powerful even when using whole genome data from only a single 
individual per population (Green et al., 2010). On the other hand, as 
each calculation of D and f applies to four populations or taxa, the 
number of calculations/quartets grows rapidly with the size of the 

data set. The number of quartets is 
⎛⎜⎜⎜⎝

n

4

⎞⎟⎟⎟⎠
, i.e. n choose 4, where n is 

the number of populations. This can present challenges in terms of 
increased computational requirements. Moreover, the resulting test 
statistics are correlated when quartets share an (internal) branch in 
the overall population or species tree, which may make a system of 
all possible four taxon tests across a data set difficult to interpret.

Because pinpointing specific introgression events in data sets 
with tens or hundreds of populations or species remains challenging, 
the f-branch or fb(C) metric was introduced in Malinsky et al. (2018) 
to disentangle correlated f4-ratio results and assign gene flow evi-
dence to specific, possibly internal, branches on a phylogeny. The 
f-branch metric builds upon and formalises verbal arguments em-
ployed by Martin et al. (2013) to assign gene flow to specific internal 

F I G U R E  1   Basic principles behind the D and f-branch statistics. (a) Example genealogies showing the sharing of derived alleles, denoted 
as 'B' between populations P2 and P3 (the ABBA pattern) and between P1 and P3 (the BABA pattern) as a result of incomplete lineage 
sorting. In a scenario without gene flow, both patterns are assumed to be equally likely (but see (Eriksson & Manica, 2012 for exceptions). 
(b) Gene flow between P2 and P3 introduces additional loci with ABBA patterns, which would lead to a positive D statistic. (c) An example 
illustrating interdependences between different f4-ratio scores, which can be informative about the timing of introgression. In this example, 
different choices for the P1 population provide constraints on when the gene flow could have happened. (d) Based on relationships between 
the f4-ratio results from different four taxon tests, the f-branch, or fb statistic, distinguishes between admixture at different time periods, 
assigning signals to different (possibly internal) branches in the population/species tree [Colour figure can be viewed at wileyonlinelibrary.
com]
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branches on the phylogeny of Heliconius butterflies. Thus, the f-
branch statistic can be seen as an aid for formulating gene flow hy-
potheses in data sets of many populations or species.

Patterson's D and related statistics have also been used to identify 
introgressed loci by sliding window scans along the genome (Fontaine 
et al., 2015; Heliconius Genome Consortium, 2012), or by calculating 
these statistics for particular short genomic regions. Because the D 
statistic itself has large variance when applied to small genomic win-
dows and because it is a poor estimator of the amount of introgres-
sion (Martin et al., 2015), additional statistics which are related to the 
f4-ratio have been designed specifically to investigate signatures of in-
trogression in genomic windows along chromosomes. These statistics 
include fd (Martin et al., 2015), its extension fdM (Malinsky et al., 2015), 
and the distance fraction df (Pfeifer & Kapan, 2019).

Programs for calculating Patterson's D and related statistics in-
clude admixtools (Patterson et al., 2012), hyde (Blischak et al., 2018), 
angsd (Paul et  al.,  2011; Soraggi et  al.,  2018), popgenome (Pfeifer & 
Kapan, 2019; Pfeifer et al., 2014), and comp-d (Mussmann et al., 2020). 
However, a number of factors call for an introduction of new software. 
First, most of the existing programs cannot handle the variant call for-
mat (VCF) (Danecek et al., 2011), the standard file format for storing ge-
netic polymorphism data produced by variant callers such as samtools 
(Li, 2011) and gatk (DePristo et al., 2011). Second, the computational 
requirements of these programs in terms of either run time or memory 
(or both) make comprehensive analyses of data sets with tens or hun-
dreds of populations or species either difficult or infeasible. Third, the 
programs implement only a subset of the statistics discussed above, 
and there are some statistics, namely fdM, and f-branch, which have 
not yet been implemented in any publicly available software package.

To address these issues, we introduce the Dsuite software pack-
age. Dsuite brings the calculation of different related statistics to-
gether into one software package, combining genome-wide and sliding 
window analyses, and downstream analyses aiding their interpretation 
(Table  1). Dsuite has a user-friendly straightforward workflow and 
uses the standard VCF format, thus generally avoiding the need for 
format conversions or data duplication. Moreover, Dsuite is compu-
tationally more efficient than other software in the core task in cal-
culating the D statistics, making it more practical for analysing large 
genome-wide data sets with tens or even hundreds of populations or 
species. Finally, Dsuite implements the calculation of the fdM and f-
branch statistics for the first time in publicly available software. While 
researchers can implement these and other statistics in their own cus-
tom scripts, the inclusion of the whole package of statistics in Dsuite 
facilitates their use and reproducibility of results.

2  | MATERIAL S AND METHODS

2.1 | The D and f4-ratio statistics

The D and f4-ratio statistics can be presented as applying to biallelic 
SNPs across four populations or taxa: P1, P2, P3, and O, related by 
the rooted tree (((P1,P2),P3),O), where the outgroup O carries the 

ancestral allele, denoted by A, and the derived allele is denoted by 
B (Durand et al., 2011; Green et al., 2010; Pease & Hahn, 2015). The 
site patterns are ordered such that the pattern BBAA refers to P1 
and P2 sharing the derived allele, ABBA to P2 and P3 sharing the 
derived allele, and BABA to P1 and P3 sharing the derived allele. 
Under the null hypothesis, which assumes no gene flow, the ABBA 
and BABA patterns are expected to occur due to incomplete line-
age sorting with equal frequencies, and a significant deviation from 
that expectation is consistent with introgression between P3 and 
either P1 or P2. See Figure 1, (Patterson et al., 2012) and (Durand 
et al., 2011) for more detail.

While simple site pattern counts can be computed for single 
sequences, most implementations, including Dsuite, work with 
allele frequency estimates, so that multiple individuals can be in-
cluded from each population or taxon. Denoting the derived allele 
frequency estimate at site i in P1 as p̂i1, and similarly p̂i2 and p̂i3 for 
populations P2 and P3, the following sums are calculated across all 
n biallelic sites:

where we assume that the outgroup is fixed for the ancestral allele (i.e., 
p̂iO=0). The D statistic is then simply a normalised difference between 
the ABBA and BABA patterns:

If the frequency of the derived allele in the outgroup is not zero, 
the results of Dsuite correspond to the D and f4-ratio statistics as 
defined by Patterson et al. (2012), who present the statistics as ap-
plying to an unrooted four taxon tree, with O being simply a fourth 
population rather than an outgroup. Their D definition is:

In this case, the ancestral versus derived allele assignment is not 
necessary and the A and B labels can be assigned arbitrarily; the 
BAAB site pattern is equivalent to ABBA, ABAB to BABA, and AABB 
to BBAA. Therefore, the Patterson et al. (2012) definition of D corre-
sponds to changing the right-hand side of Equation (1a–c) to:

(1a)nABBA=

n∑
i=1

(1− p̂i1)p̂i2p̂i3

(1b)nBABA=

n∑
i=1

p̂i1
(
1− p̂i2

)
p̂i3

(1c)nBBAA=

n∑
i=1

p̂i1p̂i2(1− p̂i3)

(2)D=
nABBA−nBABA

nABBA+nBABA

(3)D=

∑n

i=1

�
p̂i2− p̂i1

�
∗ (p̂i3− p̂iO)∑n

i=0

�
p̂i2+ p̂i1−2∗ p̂i2 ∗ p̂i1

�
∗
�
p̂i3+ p̂iO−2∗ p̂i3 ∗ p̂iO

�

(4a)nABBA=

n∑
i=1

(1− p̂i1)p̂i2p̂i3
(
1− p̂iO

)
+ p̂i1

(
1− p̂i2

) (
1− p̂i3

)
p̂iO
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We note that this definition is different from the one used by 
Durand et al. (2011) and Martin et al. (2015), which implicitly assumes 
that the outgroup is fixed for the ancestral allele and should only be 
used in such cases. While with the above formulas (Equations 3 and 
4a–c) it is technically not necessary for O to represent an outgroup, 
the current implementation of Dsuite makes this assumption in 
order to streamline the analysis and downstream interpretation of 
the results.

Calculating the f4-ratio requires that P3 be split into two subsets, 
P3a and P3b, which is done in Dsuite by randomly sampling alleles 
from P3 at each SNP but is possible even if the data set contains 
only one diploid individual from P3, in which case the two alleles are 
both sampled from that one individual. The results in Dsuite then 
correspond to the Patterson et al. (2012) definition:

2.2 | The f-branch statistic

The number of possible gene flow donor-recipient combinations 
increases rapidly with the number of populations or species. A uni-
fied test for introgression has been developed for a five taxon 
symmetric phylogeny, implemented in the DFOIL package (Pease & 
Hahn,  2015). However, no such framework currently exists for 
data sets with six or more taxa. A common approach is to perform 
the D and f4-ratio analyses on all four taxon subsamples from the 
data set (Green et  al.,  2010; Kozak et  al.,  2018; Malinsky 
et al., 2018; Martin et al., 2013; vonHoldt et al., 2016). However, 
the number of analyses that need to be performed grows very 
quickly. Even with a fixed outgroup, the number of combinations is 
⎛⎜⎜⎜⎝

n

3

⎞⎟⎟⎟⎠
, i.e., n choose 3, where n is the number of taxa. For example, 

there are 1,140 different combinations of ((P1, P2), P3) in a data 

set of 20 taxa, growing to 161,700 combinations in a data set with 
100 taxa. Interpreting the results of such a system of four taxon 
tests is not straightforward; the different subsets are not inde-
pendent as soon as the taxa share drift (that is, they share branches 
on the phylogeny) and, therefore, a single gene flow event can be 
responsible for many elevated D and f4-ratio results. At the same 
time, the correlations, especially of the f4-ratio scores, can be in-
formative about the timing of introgression events and about the 
specific donor-recipient combinations.

The f-branch or fb metric was introduced in Malinsky et al. (2018) 
to disentangle correlated f4-ratio results and assign gene flow ev-
idence to specific, possibly internal, branches on a phylogeny by 
building upon the logic developed by Martin et al.  (2013), as illus-
trated in Figure 1. Given a specific tree (with known or hypothesised 
relationships), the fb(P3) statistic reflects excess sharing of alleles 
between the population or species P3 and the descendants of the 
branch labelled b, relative to allele sharing between P3 and the de-
scendants of the sister branch of b.

Formally:

where B refers to the populations or taxa descending from the 
branch b, and A refers to descendants from the sister branch of b. 
The calculation is over all positive f4-ratio results which had A in the 
P1 and B in the P2 positions.

2.3 | Sliding window statistics

A number of statistics have been developed specifically for applica-
tion to genomic windows. They can be used to assess whether the 
admixture signal is confined to specific loci and to assist in locating 
any such loci. The D statistic itself has large variance when applied 
to small genomic windows and it is a poor estimator of the amount 
of introgression (Martin et al., 2015). However, statistics related to 
the f4-ratio have been found to perform better. The Dsuite package 
implements three of these statistics (Table 1). The first is fd (Martin 
et al., 2015), which is defined as:

(4b)nBABA=

n∑
i=1

p̂i1
(
1− p̂i2

)
p̂i3

(
1− p̂iO

)
+ (1− p̂i1)p̂i2

(
1− p̂i3

)
p̂iO

(4c)nBBAA=

n∑
i=1

p̂i1p̂i2(1− p̂i3)
(
1− p̂iO

)
+ (1− p̂i1)

(
1− p̂i2

)
p̂i3p̂iO

(5)f4ratio=

∑n

i=1

�
p̂i3a− p̂iO

�
∗ (p̂i2− p̂i1)∑n

i=1

�
p̂i3a− p̂iO

�
∗ (p̂i3b− p̂i1)

(6)fb (P3)=medianA
[
minB

[
f4ratio (A,B;P3,O)

]]

(7)fd=
S (P1,P2,P3,O)

S (P1,Pd,Pd,O)

Software
VCF 
input

Genome-wide tests/statistics Sliding window statistics

D f4-ratio f-branch D fd fdM df

admixtools ✓ ✓

angsd ✓

comp-d ✓

hyde ✓

popgenome ✓ ✓ ✓ ✓ ✓

dsuite ✓ ✓ ✓ ✓ ✓ ✓ ✓

TA B L E  1   Statistics calculated by 
Dsuite and overlap with other software 
packages
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where S (P1,P2,P3,O) stands for the numerator of D (i.e. 
nABBA−nBABA) and S (P1,Pd,Pd,O) denotes the equivalent calcula-
tion but with Pd=P2 or Pd=P3, depending on which of these two 
populations has the higher frequency of the derived allele. While the 
fd statistic may be useful to localise genomic regions introgressed 
between P2 and P3, it is not meaningful in cases of excess sharing 
of alleles between P1 and P3 and can take arbitrarily large nega-
tive values in those cases (fd<−1). To address this issue, Malinsky 
et al. (2015) developed a modified version of the fd statistic which: 
(i) under the null hypothesis of no introgression is symmetrically dis-
tributed around zero; and (ii) can equally quantify shared variation 
between P3 and P2 (positive values) or between P3 and P1 (negative 
values). They called this modified fd statistic fdM. The calculation of 
fdM further depends on the frequency of the derived allele in P1 and 
P2. If the frequency of the derived allele in P2 is higher or equal to 
P1 then fdM= fd. However, if the derived allele frequency is higher in 
P1, then:

The final sliding window statistic implemented in Dsuite is the 
distance fraction df of Pfeifer & Kapan (2019), which is derived by 
combining the approach of studying correlation of allele frequencies 
(as in the other statistics presented here) with the concept of genetic 
distance. Specifically,df=

∑n

i=1
p̂i2∗d̂i13−p̂i1∗d̂i23∑n

i=1
p̂i2∗d̂i13+p̂i1∗d̂i23

where d̂xy is an estimate of the genetic distance at variable sites be-
tween populations x and y, so d̂i13 is the distance between P1 and P3 
at site i. This can be formulated as a function of allele frequencies:

and equivalently for P2 and P3. The distance fraction df shares the 
advantages of fdM of being symmetric and bounded on the interval 
[−1,1], while it may provide a more accurate estimate of the amount 
of introgression, being less sensitive to the timing of gene flow (Pfeifer 
& Kapan, 2019). However, a thorough comparison of the advantages 
and disadvantages of all three sliding window statistics across a broad 
range of historical scenarios is lacking – therefore, it may be benefi-
cial to consider the evidence provided by the combination of all three 
statistics.

2.4 | Implementation

The statistics described above are implemented in a set of programs 
and utilities within the Dsuite package. The first program, Dtrios 
calculates the sums in Equation (4a–c) and outputs genome-wide 
statistics including the D, its associated p-value, and the f4-ratio 
statistic, for all trios of populations or species. This enables the as-
sessment of evidence for gene-flow across the entire data set. Next, 
Dinvestigate calculates the sliding window statistics (fd, fdM, and 

df) for particular trios specified by the user. These programs take as 
input a VCF file (Danecek et al., 2011), whereby allele frequencies 
for each biallelic SNP and each population are calculated by default 
from the called genotypes (the GT field). In addition, we provide an 
option to use genotype probabilities (GP field) produced for exam-
ple by phasing and imputation software such as beagle (Browning & 
Browning, 2007), or genotype likelihoods (either GL or PL fields) pro-
duced by variant callers such as GATK (DePristo et al., 2011). More 
details are provided in Appendix S1. Using genotype likelihoods or 
probabilities instead of relying solely on called genotypes can be es-
pecially useful for low coverage data and can be taken advantage of 
by choosing the -g option to Dtrios and Dinvestigate. Missing 
genotypes (./.) or likelihoods/probabilities are handled as follows. 
When data are missing in a subset of samples from a population or 
species, the allele frequency is estimated from the remaining sam-
ples; if genotypes are missing in all individuals from the population or 
species then the site is ignored for all trios which contain that popu-
lation or species. Although primarily designed for whole genome 
analyses, being based on allele frequencies, the programs are in prin-
ciple also applicable to restriction-site-associated DNA sequencing 
(RADseq) data (Andrews et al., 2016) and other multilocus genomic 
data in VCF format. Results from Dtrios can be further processed 
using the Fbranch program and associated plotting utilities for the 
f-branch statistic, facilitating interpretation of the results. Finally, 
the utilities DtriosCombine and DtriosParallel enable analy-
ses of large data sets by parallelisation of the workflow across com-
pute nodes or across CPU cores on a single computer.

2.4.1 | The Dtrios program

Dtrios does not require a priori knowledge of population or spe-
cies relationships, only the outgroup has to be specified. Instead, 
the command produces three types of output. For the first, in a file 
with the “BBAA.txt” suffix, Dtrios attempts to infer the popula-
tion or species relationships: it orders each trio assuming that the 
correct tree is the one where the BBAA pattern is more common 
than the discordant ABBA and BABA patterns, which are assumed 
to result from incomplete lineage sorting or from introgression. 
The second type of output is the Dmin score, the minimum D for 
each trio regardless of any assumptions about the tree topology. 
There is no attempt to infer the true tree; instead, the trio is or-
dered so that the difference between nABBA and nBABA is mini-
mized. This output is in a file with the “Dmin.txt” suffix and can 
be used to set a lower bound on the amount of “nontreeness” in 
the data set when the true phylogeny is uncertain, as in Malinsky 
et al. (2018). Finally, there is also an option for the user to supply 
a tree in Newick format specifying known or hypothesized rela-
tionships between the populations or species. An output file with 
the “tree.txt” suffix then contains D and f4-ratio values for trios 
ordered in a way consistent with this tree. This has to be done if 
the user later wants to calculate the f-branch statistic, because the 
statistic relies on a particular tree hypothesis. In all three types of 

(8)fdM=
S (P1,P2,P3,O)

−S (Pd,P2,Pd,O)

(10)di13= p̂i1+ p̂i3−
(
2∗ p̂i1 ∗ p̂i3

)
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output, we order P1 and P2 so that nABBA>= nBABA. As a result, 
the D statistic is always positive and all the results, including the 
f4-ratio and other statistics reflect evidence of excess allele shar-
ing between P3 and P2 for each trio.

To assess whether D is significantly different from zero, Dtrios 
uses a standard block-jackknife procedure as in Green et al. (2010) 
and Durand et al.  (2011), obtaining an approximately normally dis-
tributed standard error. For all three types of output, Dtrios cal-
culates the Z-scores as Z=D∕std_err (D), and outputs the associated 
p-values. However, when testing more than one trio, users should 
take into account the multiple testing problem and adjust the p-val-
ues accordingly. Although the different D statistics calculated on the 
same data set are not independent, a straightforward conservative 
approach is to consider them as such and to control for overall false 
discovery rate.

2.4.2 | The Dinvestigate program 

The program Dinvestigate can provide further information 
about trios for which the D statistic is significantly different from 
zero by assessing whether the admixture signal is confined to spe-
cific loci and to assist in locating any such loci. For each trio speci-
fied by the user, the program outputs overall fd, and fdM, and also 
produces a text file which contains the values of fd, fdM, and df in 
sliding windows.

The size of the windows is specified by the user and refers to a 
fixed number of “informative” SNPs, i.e., SNPs that change the nu-
merator of these statistics for any particular trio. We prefer this ap-
proach rather than specifying windows of fixed physical size (e.g., in 
kb), because equally sized physical windows can have vastly different 
amounts of information and the overall pattern of the results then 
tends to be driven by statistical noise – windows with fewer informa-
tive SNPs have more variance for all the calculated statistics.

2.4.3 | The Fbranch program 

Given the “tree.txt” output of Dtrios or DtriosCombine and the 
same Newick format tree specifying known or hypothesized rela-
tionships between the populations or species, the Fbranch pro-
gram outputs a matrix with f-branch statistic values for each branch 
on the tree, including internal branches, reflecting excess allele shar-
ing with each valid population or species P3. The f-branch statistic 
results can be visualised by plotting this matrix using the dtools.
py script, which we provide with the package. When calculating the 
f-branch statistic, it makes sense to set f4-ratio results which are not 
statistically significant to zero, because f4-ratio calculations for trios 
of nearly-equally closely related populations or species can produce 
large but nonsignificant values even in the absence of gene flow. Per 
default, our implementation sets all f4-ratio values to zero where 
the p-value of the associated D statistic for that trio is > 0.01. This 
threshold can be changed by the user.

2.4.4 | The DtriosCombine utility 

It is common practice, especially for larger data sets, that VCF files 
are divided into smaller subsets by genomic regions, e.g., per chro-
mosome. This facilitates the parallelization of computational work-
flows. The DtriosCombine program enables parallel computation 
of the D and f4-ratio statistics across genomic regions, by combin-
ing the outputs of multiple Dtrios runs, summing up the counts in 
Equation (4a–c) and the denominator of the f4-ratio. It also calculates 
overall block-jackknife standard error across all regions to produce 
overall combined p-values for the D statistic.

2.4.5 | The DtriosParallel utility 

We provide a convenient wrapper script for parallel Dtrios com-
putation on a single computer or a compute node. The script opti-
mally divides the Dtrios runs across the VCF file into a number 
of chunks which correspond to the number of available compute 
cores supplied by the used with the --cores option. The script 
waits for all the runs to complete and then automatically executes 
DtriosCombine to generate a single set of output files for the 
entire VCF data set.

3  | RESULTS AND DISCUSSION

We assessed the performance of Dsuite using three data 
sets (Malinsky et  al.,  2020): (a) variants mapping to the largest 
Metriaclima zebra reference genome scaffold (~16  Mb) from the 
data set of 73 species of Lake Malawi cichlid fishes published in 
Malinsky et  al.  (2018); (b) a small simulation data set comprising 
20 species and 20 Mb of sequence generated using the msprime 
(Kelleher et al., 2016) software; (c) a large simulation data set with 
100  Mb of sequence and 100 species. To confirm the validity of 
Dsuite results, D statistics and associated p-values from analysis 
of the Malawi cichlid data set were compared against the output 
of admixtools. The D values were found to be > 99.99% correlated 
between the two programs, and the p-values showed > 99% corre-
lation. The results are thus qualitatively the same – the small differ-
ences in D include rounding errors, and for the p-values, the slightly 
larger differences are expected because of the stochasticity of the 
jackknife standard error estimation with different block sizes. In 
the simulated data, directional admixture events were simulated at 
randomly selected time points, with uniform distribution between 
the initial split time and the present, between a randomly selected 
pair of branches coexisting at that time point, and with admixture 
proportions drawn from a beta distribution rescaled to be between 
0% and 30% with a maximum density around 5% to 10%. Diploid 
samples were produced by combining two independently simu-
lated haploid sequences. Further details on the data sets and pa-
rameters used in the simulations are outlined in Table 2 and in the 
Appendix S1 document online.
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3.1 | Computational efficiency

To assess computational efficiency of Dsuite, we calculated D sta-
tistics for all combinations of trios with four other software pack-
ages: admixtools, hyde, comp-d, and popgenome. ANGSD was not 
included in the comparisons because, unlike all the other programs, 
it uses read alignments instead of genotypes as the starting point 
for the analyses. For the Malawi cichlids and for the large simulated 
data sets, Dsuite was by far the most efficient of the programs in 
terms of both memory requirements and run time. For the small 
simulated data set, Dsuite was still the most memory efficient, 
but ADMIXTOOLS, HyDe, and especially PopGenome were faster. 
PopGenome also performed well on the large simulated data set 
– although slightly slower than Dsuite, it was the only other pro-
gram competitive in both run time and memory requirements. The 
remaining programs required a lot of memory for the analysis of the 
large simulated data set – ADMIXTOOLS and Comp-D required >1 
Terabyte of RAM and HyDe >18 Gigabytes, while the Dsuite run 
required ~223  MB. The difference in memory efficiency between 
Dsuite and especially ADMIXTOOLS and Comp-D remained more 

than two orders of magnitude also for the two other data sets. In 
terms of speed, Comp-D stood out as being the slowest across 
all analyses. We cancelled all the Comp-D runs after 24  hr with 
only a small proportion of the trios completed. Among Dsuite, 
ADMIXTOOLS, and HyDe the run time differences were up to ~2–3 
fold depending on the data set. The full results are shown in Table 3. 
We suggest that in addition to facilitating analyses of large data 
sets, improvements in computational efficiency may also facilitate 
the future inclusion of D and f4-ratio as summary statistics within 
Approximate Bayesian Computation (ABC) inference frameworks 
(Beaumont et al., 2002; Jay et al., 2019).

While the Dsuite and PopGenome analyses were run directly on the 
VCF file, all other software required format conversion. For ADMIXTOOLS, 
we first obtained data in the PED format using VCFtools v0.1.12b 
(Danecek et  al.,  2011) with the --plink option, and then translated 
these into the software-specific eigenstrat format using the convertf 
program, which is included in the admixtools package. Data conversion 
into the PHYLIP input format for HyDe and Comp-D was done using the 
vcf2phylip script (Ortiz, 2019). The additional run and set-up time needed 
for these conversions was excluded from the run times shown in Table 3.

TA B L E  2   An outline of data sets used to evaluate the performance of Dsuite

Data set Species Samples Trios
Sequence 
length SNPs

Simulation parameters

μ, ρa  
(10–8)

Ne 
(103)

Gene 
flowevents

Age 
(generations)

Malawi scaffold_0 73 131 62,196 16 Mb 612,889 Empirical data

Simulation small 20 40 1,140 20 Mb 4,342,771 1 50 5 1 million

Simulation large 100 200 161,700 100 Mb 97,201,601 1 50 10 1 million

aμ, per generation mutation rate; ρ, per-generation recombination rate 

TA B L E  3   A comparison of Dsuite and a number of other tools in terms of computational efficiency of D statistic estimation

Data set Software Options Peak memory Run time

Malawi scaffold_0 Dsuite Dtrios
Admixtools qpDstat
HyDe run _ hyde.py
Comp-Da 
PopGenome

--no-f4-ratio
blgsize: 0.01
none
-d -H -b10
do.df = F
block.size = 1,000

92 MB
27,212 MB
178 MB
8,300 MB
1,170 MB

74 min 59 s
125 min 2 s
231 min 38 s
24 hr+
24 hr+

Simulation small (20 
species)

Dsuite Dtrios
Admixtools qpDstat
HyDe run _ hyde.py
Comp-Da 
PopGenome

--no-f4-ratio
blgsize: 0.01
none
-d -H -b10
do.df = F
block.size = 1,000

8 MB
17,100 MB
258 MB
22,100 MB
440 MB

28 min 18 s
13 min 59 s
19 min 38 s
24 hr+
1 min 50 s

Simulation large 
(100 species)

Dsuite Dtrios
Admixtools qpDstat
HyDe run _ hyde.py
Comp-Da 
PopGenome

--no-f4-ratio
blgsize: 0.05
none
-d -H -b10
do.df = F
block.size = 1,000

223 MB
1,117,314 MB
18,716 MB
1,000,185 MB+
470 MB

215 min 52 s (×100b )
331 min 39 s (×100b )
576 min 32 s (×100b )
24 hr+ (×100b )
274 min 53 s (×100b )

aComp-D cannot use allele frequencies calculated across multiple individuals, so only one individual per species included. 
bBecause of the size of the data set, we divided the analysis into 100 equally sized jobs to run in parallel; the run time and memory requirements are 
given for the first job. 



     |  591MALINSKY et al.

3.2 | Example and interpretation

In this section we use the small simulated data set to illustrate the 
outputs of Dsuite and some topics related to the interpretation of 
the results. The results for the Malawi cichlid data set are discussed 
in Malinsky et al. (2018).

We found tens of differences among the trio arrangements in 
the three output files produced by Dsuite Dtrios (Figure 2a). The 
“BBAA” trio arrangements differed from the correct tree in 39 cases 
(3.4% of the trios), which illustrates that sister species do not always 
share the most derived alleles in the presence of gene flow, even 
in the absence of rate variation. However, unlike for the simulation, 
the correct tree is not known for most real-world data sets and the 
frequency of the “BBAA” pattern may then be a useful guide regard-
ing the population relationships. The “Dmin” arrangements differed 
from the correct tree in 124 trios (10.9%).

Keeping in mind that only five gene flow events were simulated, it 
is notable that almost half of the D statistics were significantly elevated, 
e.g., 546 (47.9%) even in the “Dmin” arrangement which provides a 
lower bound on the D value for each trio (Figure 2b). Using the f4-ratio 
measure, we found that admixture proportions above 5% were esti-
mated for at least 48 trios. This demonstrates that D and f4-ratio statis-
tics are correlated and that a significantly elevated result for a trio does 
not necessarily pinpoint the populations involved in a gene flow event.

The tree in Figure 3 shows the true simulated relationships be-
tween the 20 species together with the five gene flow events and 
their admixture proportions. The output of Dsuite Fbranch infer-
ence is then plotted in the inset heatmap, revealing how the f-branch 
statistic is useful in guiding the interpretation of correlated f4-ratio 
results. Ten out of the 568 f-branch (fb) signals are stronger than 5%, 
much fewer than the 73 signals identified from the raw trio analysis 
with the "BBAA" trio arrangements.

F I G U R E  2   Summary of Dtrios output for the small simulated 
data set (20 species, 1,140 trios, five gene flow events). (a) The 
number of differences in trio arrangements between the three 
different output files. (b) A brief summary comparing the results 
with the three alternative arrangements

correct tree
arrangement

BBAA
arrangement

Dmin
arrangement

39 differences 124 differences

123 differences

25.9%
562

73 

26.1%
562

75 

mean D:
significant p-values:
f4-ratios above 5%: 

Trio arrangements:
Correct tree BBAA Dmin

20.8%
546

48 

(b)

(a)

F I G U R E  3   Results of Fbranch for 
the small simulated data set. The true 
species tree, which was used as input 
for simulating the data, is shown along 
the sides. The red arrows correspond 
to the simulated gene flow events 
and true admixture proportions. The 
tree is displayed in an ‘expanded’ form 
along the y axis, so that each branch, 
including internal branches, points to a 
corresponding row in the matrix with 
inferred f-branch statistics. The values 
in the matrix thus refer to excess allele 
sharing between the branch b identified 
on the expanded tree on the y axis 
(relative to its sister branch) and the 
species P3 identified on the x-axis. As 
an example, the cell highlighted by the 
black arrow refers to excess allele sharing 
between species g and the branch leading 
to species m, relative to its sister, the 
internal branch above species n, o, p, 
and q [Colour figure can be viewed at 
wileyonlinelibrary.com]
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The reduction of information and the visualization provided by 
f-branch facilitates narrowing down the number of possible accep-
tor and donor lineages involved in a gene flow event and should be 
seen as an aid for formulating specific gene flow hypotheses in a 
large data set that can be followed up individually by other methods, 
for example in a more richly parametrised model-based inference 
framework by software such as fastsimcoal2 (Excoffier et al., 2013) 
or δaδi (Gutenkunst et al., 2009). In particular, the 10 f-branch signals 
stronger than 5% correctly identify seven out of the nine branches 
involved in gene flow events. Six of these signals correctly pinpoint 
both branches involved in gene flow events ([d, k], [e, j], [m, g], [c, 
b]). However, a single gene flow event between two branches can 
still produce more than one f-branch signal. For example, the gene 
flow event from m into g above produces elevated values for both 
fb=g(P3 = m), i.e., the branch leading to g and species m, and its “mir-
ror image” fb=m(P3  =  g), branch leading to m and species g. While 
such mirror images are a common feature of the f-branch, we note 

that the statistic is not designed to be symmetric, because the f4-ra-
tios themselves, and the trees on which the statistics are based, are 
not symmetric with respect to switching P2 and P3. Furthermore, 
the gene flow from m into g produces correlated signals between 
g and lineages related to m (e.g., n, o, p, q) because of the shared 
ancestry between these lineages and m. This generally manifests in 
horizontal lines of correlated signals in the f-branch plots as shown 
in Figure  3. Finally, note that an f-branch result in itself does not 
indicate directionality of gene flow. We suggest using 5-taxon tests, 
when possible, for inferring directionality (Pease & Hahn,  2015; 
Svardal et al., 2020).

3.3 | Assessment of f-branch accuracy

Malinsky et  al.  (2018) first introduced the f-branch statistic and 
tested its behaviour on a simple simulated data set of eight species, 

F I G U R E  4   Simulation based assessment of f-branch accuracy. The barplots show the proportion of cases where the strongest inferred 
f-branch signal corresponds the correct simulated gene flow recipient and donor branches. We simulated a single gene flow event randomly 
placed on a 20-species tree. The lighter shaded areas of each bar correspond to cases where, rather than the actual recipient/donor 
branches, their sister branches showed the strongest signal. (a–b) Proportion of times that the branch b of the strongest f-branch signal 
corresponds to the true recipient of gene flow in cases where the recipient branch is (a) a terminal or (b) an internal branch. (c–d) Proportion 
of times that P3 of the strongest f-branch signal corresponds to the true donor of gene flow or to a descendant branch of it for cases where 
the recipient branch is (c) a terminal or (d) an internal branch [Colour figure can be viewed at wileyonlinelibrary.com]

R
ec

ip
ie

nt
 c

or
re

ct
 (

%
)

100

80

60

40

20

0

R
ec

ip
ie

nt
 c

or
re

ct
 (

%
)

100

80

60

40

20

0

(a) (b)

(d)(c)

D
on

or
 c

or
re

ct
 (

%
)

100

80

60

40

20

0

D
on

or
 c

or
re

ct
 (

%
)

100

80

60

40

20

0

Gene flow strength (%)
1.0 2.5 5.0 10.0 20.0

Gene flow strength (%)
1.0 2.5 5.0 10.0 20.0

Gene flow strength (%)
1.0 2.5 5.0 10.0 20.0

Gene flow strength (%)
1.0 2.5 5.0 10.0 20.0

Recipient branch depth 0

Recipient branch depth 0 Recipient branch depth > 0

Recipient branch depth > 0

www.wileyonlinelibrary.com


     |  593MALINSKY et al.

comparing its behaviour against inference with the treemix software 
(Patterson et al., 2012; Pickrell & Pritchard, 2012). They found the f-
branch statistic to be more robust in detecting branches involved in 
hybridisation events in cases where gene flow was particularly strong. 
Here, we provide an additional assessment of f-branch inference ac-
curacy on a simulated data set of 20 species, reflecting the focus on 
Dsuite and the overall trend towards analyses of larger data sets.

We examine how often the strongest inferred f-branch signal cor-
responds to the correct gene flow donor and recipient branches within 
the species tree in a scenario with one gene flow event, depending on 
gene flow strength and the number of SNPs used as input for the in-
ference. For this, we selected numbers whose magnitude approximates 
common sequencing strategies: 104 SNPs corresponding to RADseq 
experiments, 105 SNPs corresponding to transcriptome sequencing or 
exome capture studies, and 106 SNPs which corresponds in magnitude 
to the size of data sets obtained by whole genome (re-)sequencing ex-
periments. The results are shown in Figure 4. See Appendix S1 for more 
details about how these simulations and inference were performed.

With 106 SNPs, f-branch inference was accurate in the majority 
of cases for both donor and recipient branches where the simu-
lated gene flow was stronger than 2.5%. Inference for gene flow on 
internal branches, which is a key benefit of the f-branch statistic, 
was more accurate than for terminal branches (compare Figure 4a, 
c against Figure 4b, d). We note that performance depends on the 
number of SNPs used. The inferences corresponding to RAD-seq 
were accurate in only  <  40% of the simulations, even when the 
simulated gene flow strength was substantial. Therefore, while 
RAD-seq data can be used successfully to estimate D statistics and 
the f4-ratio, the simulations suggest that f-branch results should be 
treated with caution for this data type. The inferences correspond-
ing to transcriptome or exome capture data performed better and 
inferred internal donor and recipient branches correctly in the ma-
jority of the cases, as long as the simulated gene-flow was > 1%. 
A further improvement is seen with whole genome data, where 
f-branch can deliver good accuracy for both internal and external 
branches in 20-species trees, as long as gene flow proportions are 
over 1%.

4  | CONCLUSIONS

The Dsuite software package brings together a number of sta-
tistics to learn about admixture history from patterns of allele 
sharing across populations or closely related species. In particu-
lar, by being computationally efficient, it facilitates the calcula-
tion of the D and f4-ratio statistics across tens or even hundreds 
of populations, meeting the needs of ever-growing genomic data 
sets. Correct interpretation of the results of a system of D and f4-
ratio tests remains challenging and is an active area of research. In 
real data sets, imbalances in allele sharing that lead to significantly 
elevated D and f4-ratio statistics can result from specific scenar-
ios involving ancestral population structure (Durand et al., 2011; 
Eriksson & Manica, 2012) and variation in substitution rates (Pease 

& Hahn, 2015). Even when all allele sharing imbalances are caused 
by introgression, more work remains to be done to reliably pin-
point all introgression events and infer the networks of gene flow 
that may characterise relationships between many populations or 
closely related species. Dsuite implements tools that aid the in-
terpretation of the results, including the fd, fdM, and df statistics 
suited for applying to genomic windows and the f-branch statistic 
which aids in assigning the gene flow to particular branches on the 
population or species tree.
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