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Abstract

Recent developments in the field of genomics have provided new and powerful insights into population structure and dynamics that

are essential for the conservation of biological diversity. As a commercially highly valuable species, the yellowfin tuna (Thunnus

albacares) is intensely exploited throughout its distribution in tropical oceans around the world, and is currently classified as near

threatened. However, conservation efforts for this species have so far been hampered by limited knowledge of its population

structure, due to incongruent results of previous investigations. Here, we use whole-genome sequencing in concert with a draft

genome assembly to decipher the global population structure of the yellowfin tuna, and to investigate its demographic history. We

detect significant differentiation of Atlantic and Indo-Pacific yellowfin tuna populations as well as the possibility of a third diverged

yellowfin tuna group in the Arabian Sea. We further observe evidence for past population expansion as well as asymmetric gene flow

from the Indo-Pacific to the Atlantic.
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Introduction

High-throughput sequencing technology is a valuable tool for

the conservation and management of species and populations

(Ouborg et al. 2010) enabling the discovery of fine-scale ge-

netic variation and thus the deduction of population diver-

gences with drastically increased accuracy (Hemmer-Hansen

et al. 2014). Even for marine species with high gene flow and

low population genetic structuring, it is now possible to pre-

cisely identify biologically relevant populations by their signa-

tures of local adaptation, and to decipher the demographic

imprints caused by population size changes or dispersal

(Nielsen et al. 2009; Allendorf et al. 2010). For sustainable

management of marine fish, identifying management units

(stocks) concordant with biological population units defined

by their adaptive potential to environmental variables is of

prime importance. Any mismatch will exacerbate the increasing

trend of unsustainably harvested fish stocks that suffer severe

population declines or even collapse (Mullon et al. 2005;

Reiss et al. 2009). This is particularly important for intensively

harvested species of high economic value, for which popu-

lation size declines may be exceptionally steep (Juan-Jordá

et al. 2011). However, overall population differentiation of

pelagic fishes like tunas, characterized by wide geographical

distributions, large population sizes, and high dispersal ca-

pabilities, is usually low due to high levels of gene flow, thus

limiting the applicability of classical genetic markers such as

allozymes, mitochondrial DNA, or microsatellites (Hauser

and Ward 1998). Differentiation between populations con-

nected by gene flow is often limited to genomic regions un-

derlying traits involved in local adaptation (Funk et al. 2012)

that are easily missed when only few markers are employed.

By identifying vast numbers of single nucleotide polymor-

phisms (SNPs) distributed throughout the genome, high-
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throughput sequencing approaches can capture this adap-

tive variation and thus help to resolve population structure in

the presence of gene flow.

The genus Thunnus encompasses eight economically im-

portant large tuna species, with the yellowfin tuna (Thunnus

albacares, Bonnaterre 1788) representing the main source of

fishery catch in this group, exceeding 1.2 million tons in 2013

(Collette and Nauen 1983; ISSF 2015). Currently, four differ-

ent Tuna Regional Fisheries Management Organizations glob-

ally manage four yellowfin tuna units, namely the Atlantic,

Indian, Eastern Pacific, and Western Central Pacific stocks,

which are fully exploited or may even be overexploited

(Majkowski 2007). The International Union for Conservation

of Nature (IUCN) categorizes the yellowfin tuna as near threat-

ened with a decreasing population trend (Collette et al. 2011).

High fishing pressure, accompanied by population decline,

highlights the need for a thorough understanding of the ecol-

ogy of yellowfin tuna and for tools capable of tracing illegally

caught fish in order to develop more sustainable

management.

The population structure of yellowfin tuna has already been

investigated with a variety of approaches, including morpho-

metric and meristic characters (Royce 1964; Schaefer 1991),

otolith microchemistry (Gunn and Ward 1994), fisheries sta-

tistics (e.g., Suzuki et al. 1978), tagging data (Itano and

Williams 1992; Ortiz 2001; Fonteneau and Hallier 2015),

and genetics (e.g., Ward et al. 1997; Ely et al. 2005). While

the nonmolecular studies support population structuring of

yellowfin tuna within the Atlantic, Indian, and Pacific

Oceans, the results of the genetic analyses are less congruent

and are largely dependent on the choice of markers. For in-

stance, a study on the global population genetic variation in

allozymes and mitochondrial restriction fragment length poly-

morphisms (RFLP) revealed that separate yellowfin tuna pop-

ulations exist in the Atlantic, Indian, and Pacific Oceans (Ward

et al. 1997), while another study based on mitochondrial D-

loop sequences and RFLPs found no significant evidence for

distinct populations on a global scale (Ely et al. 2005). Within

oceans, the results of genetic studies are even more diverse,

ranging from the identification of distinct populations within a

relatively confined area along the coast of India and Sri Lanka

based on D-loop sequences (Kunal et al. 2013) to the obser-

vation of homogeneity across large spatial scales in microsat-

ellites and D-loop sequences for pan-Pacific samples (Nomura

et al. 2014). While the significant genetic differentiation ob-

served in some studies points towards the existence of

subpopulations between and within oceans, the lack of con-

clusive results emphasizes the necessity for a revision of the

yellowfin population structure using more powerful genomic

tools. Indeed, preliminary analyses derived from reduced-rep-

resentation genome sequencing indicated differentiation

among Atlantic, Indian, and Pacific populations (Pecoraro

et al. 2015). Within the Pacific Ocean, selected SNPs putatively

under positive selection were used to distinguish

unambiguously between western, central, and eastern popu-

lations, while no genetic structure was detected using neutral

loci (Grewe et al. 2015). These results provide further support

for the existence of important genetic diversity in the yellowfin

tuna, which demands an in-depth assessment for the conser-

vation and management of this commercially and otherwise

valuable species.

Inference of demographic history can help to understand

responses to past environmental changes, making them rele-

vant for management strategies. Despite considerable fisher-

ies-induced population size declines within the last decades

(Juan-Jordá et al. 2011), high catch rates and the seemingly

low genetic differentiation across wide geographic scales in-

dicate large effective population sizes of yellowfin tuna. In

practice, relative abundances of yellowfin tuna within man-

agement areas are usually estimated from annual catch rates,

but genetic estimates of the effective population size (Ne) offer

insights into the global long-term demography. Ely et al.

(2005) calculated the Ne of females with mismatch distribu-

tions of D-loop sequences to be about ten million individuals,

with a historical population expansion around 500 ka. This

time line implies little influence of past glacial cycles on this

oceanic species adapted to tropical and subtropical regimes, in

contrast to neritic species that underwent considerable popu-

lation declines during glacial maxima (Hewitt 2004).

The identification of biological population units for the

management of yellowfin tuna is a timely but challenging

task for which low discriminative power has been a limiting

factor in previous studies. Therefore, we apply a whole-

genome resequencing approach here in combination with a

yellowfin tuna draft genome assembly to delineate major pop-

ulations within the species’ circumglobal range based on a

large number of unbiased SNPs distributed across the

genome. Demographic comparisons of these populations re-

vealed past population expansion as well as asymmetric gene

flow from the Indo-Pacific into the Atlantic, potentially driven

by warm-water ocean currents.

Materials and Methods

Sample Collection

Specimens were sampled at 8 localities, covering most of the

global distribution of the yellowfin tuna: Rhode Island, U.S.A.

(USA, N = 3); Mindelo, Republic of Cabo Verde (CAP, N = 5);

Abidjan, Ivory Coast (IVO, N = 6); Cape Town, South Africa

(SOU, N = 7); Barka, Oman (OMA, N = 5); Denpasar, Indonesia

(IND, N = 3); Sagami Bay and Okinawa, Japan (JAP, N = 11);

central-eastern Pacific, El Salvador (ELS, N = 2; fig. 1 and sup-

plementary table S1, Supplementary Material online).

DNA Extraction and Sequencing

Genomic DNA was extracted from muscle tissue or fin clips

using the E.Z.N.A Tissue DNA kit (Omega Bio-Tek, Norcross,
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GA, USA) according to the manufacturer’s protocol. DNA

quality and quantity were assessed with the Qubit dsDNA

BR assay (Life Technologies, Carlsbad, CA, USA), through

visual inspection of agarose gels, and by quantitation using

a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,

USA). Illumina sequencing libraries (TruSeq DNA PCR-Free

Library Preparation Kit, Illumina, San Diego, CA, USA) were

prepared at the Norwegian Sequencing Centre (NSC, www.

sequencing.uio.no; last accessed April 7, 2017) according to

the center’s protocols. In brief: DNA was normalized to 20 ng/

ml and fragmented using a focused-ultrasonicator (E220,

Covaris, Woburn, MA, USA) for a 350 base-pair (bp) insert

size (duty factor: 10%, peak incident power: 175 W, cycles

per burst: 200, duration: 50 s, mode: frequency sweeping,

temperature: 5.5–6 �C). The resulting fragment sizes were

checked on the 2100 Bioanalyzer. Fragments were cleaned

and adaptors were ligated following Illumina’s recommenda-

tions. The final libraries were eluted in 22.5 ml Illumina resus-

pension solution and stored at �20 �C until clustering and

125 bp paired-end sequencing on an Illumina HiSeq 2500

(Illumina, San Diego, CA, USA). The final dataset results

from three independent sequencing runs that were con-

ducted to increase coverage and avoid technical bias. For all

runs, demultiplexed sequences were received from the NSC

and sequence quality as well as key information such as GC

content, overrepresentation of adaptors and average length

were checked with the software FASTQC v0.11.2 (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc; last accessed

April 7, 2017).

Mapping and Variant Calling

All reads were mapped using the algorithm BWA-MEM in BWA

v0.7.8 (Li and Durbin 2009) against a de-novo assembled yel-

lowfin tuna draft genome sequence (estimated genome size:

836 Mb, coverage: 18.6�, scaffold N50: 46,871 kb, CEGMA

scores: complete 209, partial 236; for details see Malmstrøm

et al. [2016]). The draft genome assembly was indexed with

BWA, SAMTOOLS v1.1 (Li and Durbin 2009; Li 2011), and PICARD-

TOOLS v1.107 (http://broadinstitute.github.io/picard; last

accessed April 7, 2017). Mapped files were converted to

BAM format, sorted, and indexed using SAMTOOLS. Duplicates

were marked using PICARD-TOOLS, and indels were realigned

using GATK v3.2.2 (McKenna et al. 2010). In cases with more

than one library per individual, the mapped reads were

merged using PICARD-TOOLS followed by SAMTOOLS’ sorting,

PICARD-TOOLS’ deduplication, and GATK’s indel realignment.

Mean and median read coverages calculated with BEDTOOLS

v2.25.0 (Quinlan and Hall 2010) were 9.24 ± 4.21� and

7.81 ± 3.38�, respectively (averaged across samples, ± stan-

dard deviation). None of the samples had a mean or median

coverage below 5�. One sample from each of the Atlantic

and Pacific Oceans was sequenced at higher coverage (means:

21.67� and 22.24�, medians: 20� and 21�, respectively).

Variants were called using FREEBAYES v0.9.14 (Garrison and

Marth 2012) and GATK v3.3.2 (DePristo et al. 2011). GATK de-

tects variants in a two-step process, first within single samples,

followed by a joint genotyping analysis, whereas FREEBAYES does

not include a per-individual analysis step. The resulting variant

calls (FREEBAYES: 36,236,249 variants, GATK: 38,033,064 variants)

FIG. 1.—Circumtropical distribution of yellowfin tuna (light-gray shaded area) and sampling sites for this study (colored circles): USA (U.S.A.), CAP

(Republic of Cabo Verde), IVO (Ivory Coast), SOU (South Africa), OMA (Oman), IND (Indonesia), JAP (Japan), and ELS (El Salvador). Arrows indicate major

ocean surface currents.
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were further filtered to include only biallelic SNPs, and to

remove SNPs within 10 bp of an indel. The GATK file was

hard filtered according to GATK’s recommendations:

FS>60.0, MQRankSum<�12.5, ReadPosRankSum<�8.0,

QD<2.0, MQ<40.0. The intersection of the two different

filtered SNP sets (FREEBAYES: 24,693,365 SNPs, GATK: 22,479,358

SNPs) was identified using the isec command in BCFTOOLS’ v1.2

(Li 2011), and all other SNPs were excluded from further anal-

ysis. In the resulting SNP set, all sites with a genotype quality

score< 20, and read depth (DP)< 3, or DP>100 were

replaced with missing data for the respective individual. In

addition, the scaffold containing the mitochondrial genome

was excluded. The remaining 17,845,442 SNPs were further

filtered using a special build of the software PLINK v1.90 beta

(https://www.cog-genomics.org/plink2; last accessed April 7,

2017; Purcell et al. 2007), which allows larger “chromosome”

numbers with the flag “- -aec” (PLINK_HIGH_CONTIG, available

from the software authors): We excluded SNPs displaying a

minor-allele count< 2 across all populations and SNPs deviat-

ing from Hardy–Weinberg equilibrium with a P

value< 0.0001, but only when the deviation was due to sig-

nificant heterozygote excess (P value<0.0001). Additional

filtering on linkage disequilibrium (LD, squared correlation co-

efficient (r2)>0.8), minor-allele frequency (MAF, threshold

between 1 and 3%), and missing data per site (allowing a

maximum of 10, 20, or 50%) was performed using PLINK, de-

pending on the downstream analysis (see respective sections

below). The cut-off for LD was determined by estimating link-

age decay: r2 was calculated between pairs of SNPs with max-

imally 20% missing data and MAF> 1% for all individuals

using PLINK. We used the flags “- -ld-window 10000”, “- -ld-

window-kb 10000”, and “- -ld-window-r2 0” to force pair-

wise comparisons between all markers per scaffold, which

resulted in 3,808,567 r2 values. The r2 values were assigned

to 1-kb bins according to their physical distance and the mean

r2 per bin plotted using R v3.1.0 (R Core Team, 2015; supple-

mentary fig. S1, Supplementary Material online).

Mitochondrial reads were mapped and indexed as de-

scribed above against a fully assembled yellowfin tuna mito-

chondrial genome (Guo et al. 2014). Mitochondrial SNPs were

called using mpileup in SAMTOOLS v1.3, applying a minimum

mapping quality (“-q 20”) and a minimum base quality (“-Q

30”) filter before extracting the consensus sequence using the

“-c” flag in the call command in BCFTOOLS v1.3. The resulting

variant call consensus sequence was transformed into fastq

format using vcfutils (vcf2fq) in SAMTOOLS only when the mini-

mum depth was above 6�. The fastq format was translated

into fasta format using SEQTK v1.0-r75 (https://github.com/lh3/

seqtk; last accessed April 7, 2017).

Species Verification

We complemented morphological species identification of our

specimens by comparison of the entire mitochondrial

genomes with 26 mitochondrial genomes of all eight species

of the genus Thunnus and one outgroup (Katsuwonus pela-

mis), retrieved from GenBank (Benson et al. 2013).

All sequences were jointly aligned using the “- -auto” option

in MAFFT v7.158b (Katoh et al. 2002) and the alignment was

visually checked using ALIVIEW v1.16 (Larsson 2014). A maxi-

mum likelihood tree search with ten individual runs was per-

formed under the GTRCAT substitution model using RAXML

v8.0.26 (Stamatakis 2014), and node support was assessed

with up to 1,000 bootstrap replicates (option “autoMRE”;

supplementary fig. S2, Supplementary Material online).

Genetic Differentiation

Pairwise fixation indices (FST) were estimated according to

Weir and Cockerham (1984) by applying the “- -weir-fst-

pop” flag in VCFTOOLS v0.1.14 (Danecek et al. 2011), and ac-

cording to Nei (1987) using the package HIERFSTAT v0.04-22

(Goudet 2005) in R, based on SNPs with MAF> 1% and at

most 10% missing genotypes (supplementary table S2,

Supplementary Material online). Bootstrapping was per-

formed to obtain confidence intervals (95%) and P values

for Weir & Cockerham’s FST estimates using the R package

STAMPP (Pembleton et al. 2013), and P values were adjusted

for multiple testing by applying sequential Bonferroni correc-

tion (Rice 1988). Similar FST estimates were obtained with

other filtering thresholds for MAF and missing data (supple-

mentary table S3, Supplementary Material online).

Heterozygosity and the inbreeding coefficient (FIS) were calcu-

lated using the package HIERFSTAT. Genetic differentiation be-

tween sampling localities was assessed with principal

component analysis (PCA) and discriminant analysis of princi-

pal components (DAPC) of a SNP set with MAF> 1% and at

most 10% missing genotypes using the package ADEGENET

v1.4-1 (Jombart 2008; Jombart et al. 2010) in R. This analysis

was performed separately with data from all samples, from

Atlantic individuals only, and with Indo-Pacific individuals only.

To prevent overfitting of the DAPC, the number of retained

principal components (PCs) was chosen according to the op-

timal a-score. We retained five of 40 PCs for the analysis in-

cluding all sampling sites (see fig. 2b), four of 13 for the

comparison among Atlantic sampling sites, and five of 14

for the comparison among Indo-Pacific sites (supplementary

fig. S3a and S3b, Supplementary Material online). Significance

of cluster separation was tested using a one-way analysis of

variance (ANOVA) in R. Individual ancestry and the most ap-

propriate number of genetic clusters (K) was assessed using

the Bayesian clustering method implemented in STRUCTURE

v2.3.4 (Pritchard et al. 2000) under the admixture model

with correlated allele frequencies for closely related or highly

migratory species (Falush et al. 2003). Default values were

applied for the correlated allele frequency model prior

(mean: 0.01, standard deviation: 0.05). Five replicates were

performed, each testing for one to five clusters (K = 1 to K = 5)
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using SNPs in linkage equilibrium (r2� 0.8) with MAF>3%

and at most 20% missing genotypes. The Markov-chain

Monte Carlo (MCMC) was run for 800,000 generations of

which the first 300,000 generations were discarded as burn-

in. To account for putative biases in the inference of the true

number of K by uneven sample sizes (Puechmaille 2016), clus-

ter membership was also investigated with an even sampling

scheme of 5 individuals each from CAP, SOU, OMA, and JAP,

A B

C

D

E

FIG. 2.—Genetic differentiation of yellowfin tuna. (a) Principal component analysis (PCA) showing a separation of Atlantic (USA, CAP, and IVO) and

Indo-Pacific samples (SOU, IND, and JAP) on the first principal component axis (PC1) and additional differentiation of the Arabian Sea samples (OMA) on PC2.

(b) Discriminant analysis of principal components (DAPC) describing the variation between the sampling sites. In (a) and (b), inertia ellipses summarize the

variation per sampling site (using adegenet’s default “cellipse” value of 1.5, these correspond to 67% confidence intervals) and eigenvalues for the first five

PCs are displayed in bar plot insets. (c, d) Individual admixture bar plots. STRUCTURE q values (vertical axis) are shaded according to cluster membership, black

lines separate sampling locations. Within sampling sites, individuals are sorted according to assignment proportions. Number of tested clusters: (c) K = 2, (d)

K =3. (e) Maximum-likelihood phylogenetic clustering of individuals. Groups including only Atlantic individuals are marked with “ATL”, groups including only

Indo-Pacific individuals with “PAC.” The scale bar indicates the number of substitutions.
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using the same model assumptions and parameters. RAXML was

used to construct the maximum-likelihood tree under the GTR

model with ascertainment bias correction for the absence of

invariant sites (“-m ASC_GTRCAT”; Lewis 2001). For this anal-

ysis, a larger set of SNPs with MAF>3% and maximally 50%

missing data per site was used to improve the phylogenetic

accuracy by character additions irrespective of an increased

amount of missing data (Jiang et al. 2014). Rate heterogeneity

was disabled using the flag “-V”. Node support was assessed

with 100 bootstrap replicates.

To generate a mitochondrial haplotype genealogy graph,

the mitochondrial genomes were aligned using default set-

tings in MAFFT and alignments were visually checked and cor-

rected using ALIVIEW. A parsimony tree was obtained using

RAXML and used to visualize haplotype relationships with FITCHI

v1.1.4 (Matschiner 2016). To reduce graph complexity, tran-

sitions were ignored in the calculation of edge lengths by ap-

plying the “-x” flag. The parsimony tree search was repeated

ten times with different random number seeds; all haplotype

genealogy graphs constructed from these trees were qualita-

tively similar.

Demography and Gene Flow

To detect differences in the demographic histories of popula-

tions, a pairwise sequentially Markovian coalescent (PSMC; Li

and Durbin 2011) analysis was performed with the two high-

coverage genomes representing the Atlantic (CAP248) and

Indo-Pacific (IND569) populations. We inferred heterozygous

sites following Li and Durbin (2011): on each genome sepa-

rately, SNP calling was performed using SAMTOOLS’ mpileup

command, applying a minimum mapping quality (“-q 20”)

and a minimum base quality (“-Q 30”) threshold, and the

consensus sequence was extracted using the “-c” flag in

the call function of BCFTOOLS. The resulting consensus sequence

was transformed into fastq format using the function vcfutils

(vcf2fq) in SAMTOOLS only when the minimum depth was above

6� and the maximum depth did not exceed 40�. The fastq

file was converted into PSMC input format using the tool

fq2psmcfa by choosing a minimum quality threshold (“-q”)

of 20, a “scaffold-good-size” (“-g”) of 10,000 bp, and a

window size (“-s”) of 20. The optimal window size is depen-

dent on the density of heterozygous sites and was adjusted so

that the number of windows containing two or more SNPs is

~1% of all windows. Subsequently, the population history

was inferred by running PSMC for 25 iterations with the

following parameters: “-N 15”, “-r 5”, and “-p

4*4 + 13*2 + 4*4 + 6.” In order to prevent overfitting, we re-

duced the number of free parameters to 22. Bootstrapping

(100 replicates) was performed to assess uncertainty in the

PSMC estimates using the splitfa script provided with the soft-

ware. The trunk size was adjusted corresponding to the scaf-

fold size and set to 1 Mb. The output of the PSMC needs to be

scaled using an estimate of mutation rate per generation and

a generation time in years. According to IUCN, the generation

time of yellowfin tuna is 2.2–3.5 years (Collette et al. 2011).

Estimates of the genome-wide yellowfin tuna mutation rate

were not available and were therefore computed based on

the divergence time and number of substitutions between the

genome sequences of the yellowfin tuna (Malmstrøm et al.

2016) and the closely related Pacific bluefin tuna (Thunnus

orientalis, Nakamura et al. 2013). The divergence time be-

tween these two species was recently estimated to be

1.9965 Ma based on a fossil-calibrated phylogeny of teleost

genome sequences (Musilová et al., unpublished). To map the

yellowfin tuna reads against the Pacific bluefin tuna genome,

SAMTOOLS’ mpileup function was used with the same filter sets

as above, which resulted in 9.24 � 106 substitutions.

Assuming a generation time of 2.5 years and a genome size

of 684 Mb (Pacific bluefin tuna; Nakamura et al. 2013), this

translates to a mutation rate (�) of 7.3 � 10�9 substitutions/

site/generation. If instead a generation of 3.5 years is as-

sumed, the resulting mutation rate is 1.0 � 10�8 substitu-

tions/site/generation. Generally, nuclear SNPs are assumed

to have mutation rates on the order of 10�8 to 10�9 substi-

tutions/site/generation (Brumfield et al. 2003), and the human

mutation rate is estimated to be 2.5� 10�8 substitutions/site/

generation (Nachman and Crowell 2000), which would place

our estimates at the slower end of the scale. Demographic

histories inferred from phylogenetically derived mutation rates

may overestimate the timing of past population size changes

(Ho et al. 2005), however, these rates can serve as minimum

estimates with the real mutation rate possibly being larger.

To account for this potential bias, we performed demo-

graphic analysis with three mutation rates (per site per

generation): 7.3 � 10�9 (the minimum estimate obtained

using a generation time of 2.5 years), 2.5 � 10�8 (the

established human mutation rate), and 1.5 � 10�8 (an

intermediate estimate).

To estimate demographic parameters while taking into ac-

count potentially asymmetric rates of gene flow between

Atlantic and Indo-Pacific populations, we performed coales-

cent simulations with the software FASTSIMCOAL2 v.2.5.2

(Excoffier et al. 2013) according to an evolutionary scenario

in which an ancestral population splits into two extant popu-

lations that are connected by bi-directional gene flow. The

divergence event between the two extant populations was

assumed to be instantaneous, the effective population sizes

of ancestral and extant populations were assumed to be con-

stant, and the mutation rate was fixed to 7.3 � 10�9 per site

and generation (see above). The divergence time, the three

effective population sizes, and the two migration rate param-

eters in these simulations were optimized so that the joint site-

frequency spectra (SFS) resulting from simulated sequence

data were similar to the observed joint SFS. For this compar-

ison, the minor-allele SFS of 14 Atlantic (USA, CAP, and IVO)

and 16 Indo-Pacific (IND, JAP, and ELS) yellowfin tuna was

calculated from all sites with a maximum of 50% of missing
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data per group (Atlantic and Indo-Pacific), by drawing at

random 14 alleles per group. In cases where the frequency

of the two allelic states was exactly 0.5, both were used for

the joint SFS with a weight of 0.5 (see Roesti et al. 2015). To

account for a potential bias caused by the heterogeneity of

the ELS sample, all parameters were additionally calculated by

only considering IND and JAP as Indo-Pacific population. Prior

distributions for the six parameters were set as in Roesti et al.

(2015). We carried out 80 replicate sets of simulations, each

including 40 estimation loops with 100,000 simulations. Out

of the 80 sets of simulations, we used the ten best-fitting sets

(those with the smallest difference between the estimated and

the observed likelihood) to calculate mean estimates of demo-

graphic parameters.

Results

Species Verification

The morphological similarity of closely related tuna, especially

juvenile fish, can lead to species misidentification (Pedrosa-

Gerasmio et al. 2012). We therefore complemented morpho-

logical species identification of our specimens with phyloge-

netic analyses of the mitochondrial genomes. All our

specimens grouped within a monophyletic clade that included

four Thunnus albacares mitochondrial genome sequences

taken from GenBank but no sequences of other species (sup-

plementary fig. S2, Supplementary Material online), confirm-

ing their morphological identification as Thunnus albacares.

Genetic Differentiation

Pairwise fixation indices (FST) estimated according to Weir &

Cockerham (FST(W&C),1984) and Nei (FST(Nei),1987) are highly

correlated (linear model; R2 = 0.976, P< 0.001), with Weir &

Cockerham’s FST showing marginally larger estimates in most

comparisons (mean FST(W&C) 0.0081; FST(Nei) 0.0075). Weir &

Cockerham’s FST might be upwardly biased with small samples

sizes, we therefore discuss only Nei’s FST in the following sec-

tion, but provide both results in the supplementary table S2,

Supplementary Material online. FST estimates indicate genetic

differentiation between the Eastern North Atlantic (CAP, IVO)

and the western Indo-Pacific (IND, JAP) with FST> 0.01 for all

comparisons. In contrast, intraoceanic FST estimates are con-

siderably lower (e.g., CAP vs. IVO: FST = 0.0034; JAP vs. IND:

FST = 0.0033). The overall lowest FST estimates are found be-

tween SOU and JAP (FST = 0.0023) and between ELS and

either USA, OMA or IND (FST = 0.0020, 0.0007, and

�0.0004, respectively). However, low sample sizes for USA,

IND, and ELS may comprise the reliability of some of these

estimates, also reflected by nonsignificant P values (supple-

mentary table S2, Supplementary Material online).

Surprisingly, samples from the Arabian Sea (OMA) are differ-

entiated from all other sampling sites (FST between 0.0084

and 0.0128) except for the sparsely sampled ELS. The overall

observed heterozygosity is high (HO = 0.45 ± 0.02) and per

population FIS estimates are negative, which could indicate

outbreeding, but could also be caused by selection, associative

overdominance, or differential variance in reproductive suc-

cess. Alternatively, the excess of heterozygous sites could

result from reads mapping to duplicated regions, despite

our filtering of SNPs based on mapping quality and read

depth. To minimize the inclusion of SNPs potentially affected

by such reads, we applied tighter thresholds on maximum

read depth (<20) and the significance level for heterozygote

excess (<0.01) in separate analyses. However, these stricter

criteria had only minor effects on the observed heterozygosity

and the FIS estimates (supplementary table S4, Supplementary

Material online).

In the PCA, the first principal component axis (PC1) explains

3.5% of the total genomic variation, and 3.0% are explained

by PC2 (fig. 2a). Significant separation (ANOVA, F1,30 = 96.56,

P<0.001) on PC1 was identified between the combined

Atlantic sampling sites (USA, CAP, IVO) and the combined

Pacific sampling site (JAP, IND, ELS). Samples from the

Arabian Sea (OMA) are further significantly differentiated

from all other samples along PC2 (ANOVA, F1,42 = 28.33,

P<0.001), while the IND specimens sampled near the

divide between the Indian and Pacific Oceans group with

the JAP samples, and are not differentiated from the Pacific

sites (JAP, ELS vs. IND: ANOVA, PC1 F1,16 = 0.35, P = 0.57; PC2

F1,16 = 0.77, P = 0.35). In contrast, SOU individuals are located

between the genetic clusters formed by specimens from the

Atlantic and Pacific Oceans on PC1 and are significantly sep-

arated from both (SOU vs. Atlantic (USA, CAP, IVO): ANOVA,

F1,21 = 49.92, P<0.001; SOU vs. Pacific (IND, JAP, ELS):

ANOVA, F1,23 = 5.99, P<0.05). The two individuals sampled

in the central-eastern Pacific (ELS) are located in different po-

sitions: one clusters within the OMA group while the other

appears close to the Pacific group.

The PCA summarizes the dominant components of varia-

tion in genomic data, showing the difference between sam-

pling sites but also including the variation within groups of

samples, thus limiting the amount of between-population var-

iation explained by the first two principal component axes. In

contrast, DAPC maximizes variation between groups while

minimizing within-group variation, allowing a better discrim-

ination of predefined groups (Jombart et al. 2010). In the

performed DAPC, PC1 separates Atlantic and Indo-Pacific

samples and explains 73.2% of the total between-group var-

iation while 20.2% of the variation was explained by PC2 (fig.

2b). Further intraoceanic differentiation between the eastern

and the western Atlantic, and within the Indo-Pacific between

JAP, IND, SOU, and OMA is recognizable on PC2. In contrast

to the PCA, the SOU samples are included in one well-defined

cluster together with the JAP and IND samples in the DAPC

plot, indicating a strong Indo-Pacific influence around the

Cape of Good Hope. To gain further insight into 1) intraoce-

anic Atlantic differentiation, and 2) the position of SOU
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samples, we performed two independent DAPCs including

either only Atlantic, or only JAP, IND, and SOU samples, re-

spectively. Within the intra Atlantic DAPC, East and West

Atlantic sampling sites are separated on PC1 without overlap

while no such separation was detected among the Indo-

Pacific and SOU samples (supplementary fig. S3a and S3b,

Supplementary Material online).

Multivariate analyses like PCA and DAPC describe the larg-

est variation of the data, but they do not take advantage of

population genetic models (Patterson et al. 2006). Thus, the

yellowfin tuna population structure was further examined

using the Bayesian model-based clustering approach imple-

mented in the software STRUCTURE. The highest likelihood

value was found for K = 2 (fig. 2c, and supplementary fig.

S4a, supplementary table S5, Supplementary Material

online), which is further supported as the best fit number of

genetic clusters by Evanno’s �K, an ad hoc quantity based on

the rate of change of the likelihood (supplementary fig. S4b,

Supplementary Material online; Evanno et al. 2005).

According to the admixture proportions in a two-population

scenario, one cluster is formed by the Eastern Atlantic samples

CAP and IVO together with the OMA samples, and another

cluster is formed by the western Pacific specimens of locations

JAP and IND (fig. 2c). Samples from USA, SOU, and ELS show

mixed ancestry. The average cluster membership over all SOU

individuals indicates a greater similarity with Pacific than with

Atlantic specimens (0.61% vs. 0.39%), in agreement with the

results of the multivariate analyses. The existence of a third

cluster (K = 3) is not apparent in the admixture plot (fig. 2d)

and not supported by Evanno’s �K (supplementary fig. S4b,

Supplementary Material online). Applying a sampling location

prior (Hubisz et al. 2009) to assist clustering in STRUCTURE did not

improve cluster assignment (data not shown). Subsampling

populations to an even sample number to overcome putative

sample size effects (Puechmaille 2016) was performed by in-

cluding only five individuals each from the Atlantic (CAP), the

Pacific (JAP), the Arabian Sea (OMA), and the Pacific-Atlantic

divide off South Africa (SOU) in the STRUCTURE analysis, but per-

population admixture proportions in the subsampled analysis

are similar to those estimated in analyses with all samples, and

K = 2 is supported by a marked increase in likelihood values

(supplementary fig. S3c and S3d, and supplementary table S5,

Supplementary Material online).

Since multivariate and Bayesian clustering analyses are con-

strained either computationally (in the case of STRUCTURE), or by

the method (in the case of PCA; Clavel et al. 2014), we addi-

tionally inferred the yellowfin tuna population structure using

maximum-likelihood phylogenetic clustering with a less strictly

filtered dataset. In agreement with the multivariate and

Bayesian clustering methods, the maximum-likelihood tree

shows two well-separated clades, of which one is composed

of individuals from the Indo-Pacific (JAP, IND) and the other

includes all Atlantic (USA, CAP, IVO) specimens (fig. 2e). All

but one of the OMA samples are nested within the Atlantic

clade, supporting the cluster assignment of the STRUCTURE anal-

ysis. The single OMA individual sharing high ancestry with the

Indo-Pacific cluster in the STRUCTURE analysis also appears within

the Indo-Pacific clade in the phylogenetic tree. Therefore, the

OMA clade can be viewed as a nearly monophyletic group

and may represent a distinct genetic cluster. Furthermore,

all except one SOU individual are located in a single clade

that groups with the Indo-Pacific clade, in agreement with

the results of the STRUCTURE and multivariate analyses.

However, bootstrap support for most branches is weak

(<80) and thus these groups should be interpreted with

caution (supplementary fig. S3e, Supplementary Material

online). Given the genetic differentiation of Atlantic or

Indo-Pacific yellowfin tuna, we were also able to identify

a minimal panel of ten SNPs allowing the assignment of

individuals to their origins with an accuracy of 91%, al-

though the small sample size necessitates further valida-

tion (data therefore not shown).

In addition to nuclear SNPs, we also investigated the ge-

netic relationships of yellowfin tuna based on haplotypes de-

rived from full mitochondrial genomes (fig. 3). The

mitochondrial alignment resulted in a total of 409 variable

sites (2.48%), of which a maximum-parsimony tree with a

minimum of 583 substitutions was constructed.

Mitochondrial genetic variation was illustrated as a haplotype

genealogy graph based on the maximum-parsimony tree,

with graph edge lengths calculated from transversions only.

The haplotype genealogy graph includes 20 nodes, each rep-

resenting one or more sampled mitochondrial sequences that

FIG. 3.—Unrooted haplotype genealogy graph of yellowfin tuna mi-

tochondrial genomes. Edge lengths correspond to the number of transver-

sions (total 25), and node sizes are proportional to haplotype frequencies.

Sampling sites for haplotypes are indicated by node fragment colors.
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are identical or separated only by transitions. To connect these

20 sampled nodes, a total of 25 transversions were required

(fig. 3), indicating incomplete sampling of the genetic diversity

presumably due to low sample sizes, as six intermediate nodes

were inferred for which no sequences were present in our

dataset. One major central node represents sequences of 15

individuals from all locations except OMA and ELS, however,

individuals from OMA and ELS are separated by only a single

transversion from this central node. In addition, three nodes

represent sequences sampled from more than one individual,

and in these cases, the sequences are found both in Atlantic

and Indo-Pacific specimens.

Demography and Gene Flow

Models of demographic history can help to identify population

differentiation by inferring past population-specific demo-

graphic changes. We used the pairwise sequential

Markovian coalescent (PSMC; Li and Durbin 2011) on single

representatives of the Atlantic (ATL) and Indo-Pacific (PAC)

Oceans to infer the demographic history of the two popula-

tions. Both genomes feature a high number of heterozygous

sites (3.2 � 106), indicating high overall genetic variability.

With an assumed mutation rate of 7.3 � 10�9 mutations/

site/generation, the PSMC estimates of effective population

sizes (Ne; fig. 4) individually fluctuate between ~20,000 and

~65,000, and demonstrate severe reductions in population

size in the Late Pleistocene, followed by population expansions

towards the Holocene and another decrease near recent

times. Both the ATL and PAC genomes indicate similar trajec-

tories over the last 1 myr with population expansions and

bottlenecks roughly following the fluctuations in relative sea

level in an anticyclical pattern, showing a decline in population

size at higher sea levels during marine isotope stages (MIS) 6 to

~20, and an expansion of population size during low sea levels

in the glacial periods corresponding to MIS 2–4. When apply-

ing higher alternative mutation rates (1.5 � 10�8 and 2.5 �

10�8 mutations/site/generation) to account for PSMC param-

eter uncertainties, the inferred population size changes are

shifted towards more recent times and the overall estimates

of Ne are lowered to fluctuate between ~5,000 and ~30,000,

with the lowest estimates corresponding to a bottleneck

around the time of the Last Glacial Maximum (LGM, ~21 ka;

fig. 4).

Demographic parameters were also estimated through co-

alescent simulations with FASTSIMCOAL2, comparing simulated

SFS with the observed joint SFS of Atlantic and Indo-Pacific

yellowfin tuna populations. Using the best-fitting ten out of

80 replicate sets of analyses, the effective population sizes of

the ancestral, the Atlantic, and the Indo-Pacific yellowfin tuna

populations were estimated as 33,122.0 ± 16,018.9,

1,955.2 ± 625.6, and 52,423.2 ± 20,733.6, respectively

(mean across ten replicates ± standard deviation). The diver-

gence time between Atlantic and Indo-Pacific yellowfin tuna

was estimated as 33,564.3 ± 7,603.4 generations, and the

migration rates were estimated as 0.048 ± 0.014 from the

Indo-Pacific to the Atlantic, and 0.003 ± 0.003 in the opposite

direction, from the Atlantic to the Indo-Pacific. Qualitatively
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similar estimates were obtained when removing the hetero-

genic ELS sample from the Indo-Pacific population (supple-

mentary table S6, Supplementary Material online).

Discussion

Yellowfin Tuna is Genetically Differentiated between
Major Oceans

By using a range of discriminative methods, we thoroughly

investigated the global population structure of yellowfin tuna

and found a clear separation between Atlantic and Indo-

Pacific groups as well as indicative evidence for a third ge-

notypic cluster within the Arabian Sea. This largely confirms

recent preliminary results based on reduced-representation

genome sequencing, which also pointed at separation be-

tween oceans (Pecoraro et al. 2015). However, the existence

of yellowfin tuna population structure has been controversial,

as long-distance movements are known to occur in this

highly migratory species (Itano and Williams 1992; Ortiz

2001; Fonteneau and Hallier 2015) which could potentially

lead to a homogenization of between-ocean genetic differ-

entiation. The distribution of yellowfin tuna is restricted to

tropical and subtropical regions except the Mediterranean;

therefore dispersal between the Atlantic and Indo-Pacific

Oceans is only possible to the south of Africa around the

Cape of Good Hope. However, this route may not be favor-

able for the migration of warm-water fishes as it would in-

volve the crossing of the strong Benguela Current, which

transports cold upwelled water northward along the south-

west coast of Africa and is a potential barrier to gene flow

(Henriques et al. 2014). Moreover, even though extensive

tagging programs have been implemented for tropical

tunas (e.g., Fonteneau and Hallier 2015), we did not find

tagging-related literature that directly demonstrates dispersal

between the Atlantic and Indo-Pacific Oceans. Previous ge-

netic analyses based on mitochondrial sequences showed a

strong separation of Atlantic and Indo-Pacific populations of

the closely related bigeye tuna (Thunnus obesus) with an

admixture zone off South Africa (Chow et al. 2000;

Durand et al. 2005; Gonzalez et al. 2008). On the other

hand, a subsequent investigation found no evidence of dif-

ferentiation based on nuclear DNA and the authors attrib-

uted the incongruence of mitochondrial and nuclear patterns

to separation during glacial maxima followed by secondary

contact (Gonzalez et al. 2008). Using nuclear genomic SNPs,

we detected a clear differentiation between Atlantic and

Indo-Pacific yellowfin tuna in this study. Unlike in bigeye

tuna (Gonzalez et al. 2008), mitochondrial yellowfin tuna

sequences alone did not support separate Atlantic and

Indo-Pacific clades. A lack of mitochondrial separation was

also previously found based on D-loop sequences (Ely et al.

2005). In contrast, RFLP analysis of a slower-evolving mito-

chondrial gene indicated low levels of genetic differentiation,

leading the authors to suggest that homoplasy and high

levels of haplotypic diversity would mask differentiation in

the rapidly evolving D-loop (Ely et al. 2005). However, our

analysis of the mitochondrial genome excluding the D-loop

resulted in a haplotype genealogy that was qualitatively very

similar to the one based on full mitochondrial genomes and

also did not show any separation between Atlantic and Indo-

Pacific populations (data not shown). Thus, the disagreement

between the identified population structure in the mitochon-

drial RFLP data (Ely et al. 2005) and the lack of structure in

the mitochondrial genome sequences produced in our study

could be attributed to either stochastic effects in the RFLP

analysis, or to insufficient sampling of individuals in our anal-

ysis. In addition, the fact that we detected population sepa-

ration with a much larger nuclear dataset suggests that our

mitochondrial dataset and possibly those used in previous

studies may suffer a lack of power to detect population dif-

ferentiation. Alternatively, the discordance between nuclear

and mitochondrial patterns could also arise by predominantly

female migration and dispersal. Genetic differentiation be-

tween Atlantic and Indo-Pacific groups has also been de-

scribed for two other circumtropical members of the genus

Thunnus: albacore (T. alalunga; Albaina et al. 2013;

Laconcha et al. 2015) and bigeye tuna (T. obesus; Chow

et al. 2000; Martı́nez et al. 2006; Gonzalez et al. 2008).

However, using traditional genetic tools, a single population

was found for the southern bluefin tuna (T. maccoyii) with a

circumglobal distribution in the temperate waters of the

southern Atlantic and Indo-Pacific (Grewe et al. 1997), and

for the closest relative of the genus Thunnus, the skipjack

tuna (Katsuwonus pelamis; Graves et al. 1984; Ely et al.

2005). It remains to be investigated whether increased reso-

lution provided by genomic datasets will also be able to de-

cipher population genetic structuring in these species.

In contrast to the marked differentiation of Atlantic and

Indo-Pacific yellowfin tuna based on our nuclear SNP dataset,

genetic separation between the Indian Ocean and the Pacific

is less pronounced, indicating that larger sample sizes might

be necessary to identify differentiation between these regions.

Our Indonesian samples cluster with northwestern Pacific

samples in all analyses, pointing towards a major influence

of the Pacific to the waters around Indonesia. The

Indonesian Throughflow, a strong ocean current running

from the Pacific to the Indian Ocean through a series of

narrow straits between the Indonesian islands, transports

warm Pacific water into the eastern Indian Ocean (fig. 1;

Sprintall et al. 2014) and may facilitate dispersal between

these water bodies. Other studies on circumtropical tunas

also found little or no genetic heterogeneity between Indo-

Pacific populations but identified genetic differentiation within

the Atlantic (Gonzalez et al. 2008; Laconcha et al. 2015). This

trend is apparent in our intraoceanic analyses, indicating dif-

ferentiation between the western and eastern Atlantic, but

not between South Africa, Indonesia, and Japan.
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Nevertheless, our samples from the northern Indian Ocean

(Arabian Sea) are genetically differentiated from both the

Atlantic and the Indo-Pacific (IND, JAP) clusters in multivariate

and phylogenetic analyses. Morphological differences exist be-

tween yellowfin tuna from the Indian Ocean off Somalia and

other Atlantic and Pacific samples (Royce 1964); furthermore,

previous analyses of yellowfin tuna mitochondrial DNA on a

smaller geographic scale showed differentiated groups in the

northeastern and southeastern Arabian Sea and also in the

Bay of Bengal (Kunal et al. 2013). Concordantly, our mito-

chondrial haplotype genealogy graph shows only two nodes

that are shared between samples from the Oman and other

areas, which may indicate genetic isolation of the Arabian Sea

population. In addition, tagging data for Indian Ocean yellow-

fin tuna suggest largely restricted movements within the west-

ern Indian Ocean (IOTC 2015). Recent preliminary analyses

utilizing reduced-representation genome sequencing

showed differentiated clusters of Atlantic and Pacific yellowfin

tuna, with a third genetically distinct cluster in the western

Indian Ocean (between ~0� and 10�S latitude; Pecoraro et al.

2015) that appeared to share more ancestry with the Pacific

than the Atlantic cluster. In contrast, our samples from the

Arabian Sea in the northern Indian Ocean show greater sim-

ilarity with the Atlantic clade in both the admixture and phy-

logenetic analysis, and also share mitochondrial haplotypes

with Atlantic samples. The Arabian Sea in the northern

Indian Ocean is influenced by strong seasonal monsoon

cycles with increased productivity (Singh et al. 2011), where

yellowfin tuna populations have one major reproductive

season during the winter monsoon (November–February;

Stequert et al. 2001). This is contrary to other populations;

for example, in the western Pacific spawning occurs all year

with a peak between February and June (Sun et al. 2005) and

in the northwestern Atlantic, where yellowfin tuna spawn

between March and November (Arocha et al. 2001). Thus,

discrete spawning times in the Arabian Sea could potentially

have driven genetic divergence. High fishing pressure consti-

tutes a major problem in the Arabian Sea and the most recent

stock-size estimates indicate overfishing of the Indian ocean

yellowfin tuna as a result of large and unsustainable catches

(IOTC 2015). Follow-up studies with larger sample sizes will

therefore be of high priority to delineate the existence of a

genetically and biologically diverged yellowfin tuna population

in this area.

Intraoceanic differentiation has been described between

the western, central, and eastern Pacific (Ward et al. 1994;

Grewe et al. 2015). In our analysis, we included only two

samples from the central-eastern Pacific. Although the low

sample size does not allow detailed conclusions, the genetic

heterogeneity of these samples suggests a highly structured

Pacific population as shown previously, or alternatively may be

due to migratory individuals. More extensive sampling of in-

dividuals would be needed for further investigations of popu-

lation structure within the Pacific.

Demographic Histories and Asymmetric Gene Flow
between Atlantic and Indo-Pacific Populations

Genomes do not only convey information about current pop-

ulation structure, but also hold clues to past demographic

change and can therefore provide information about the evo-

lutionary history of populations. Methods for the inference of

these demographic histories, such as PSMC or coalescent sim-

ulations, require estimates of the genome-wide mutation rate,

which have so far not been described for yellowfin tuna.

Therefore, we calculated a mutation rate of yellowfin tuna

based on a genomic comparison with the closely related blue-

fin tuna, for which divergence time estimates are available.

Using the resulting mutation rate estimate of 7.3 � 10�9

mutations/site/generation, our PSMC analyses recovered a

past population expansion that began around 80 ka with an

Ne around 20,000 and ended about 20 ka when the Ne was

around 65,000. However, as the effective within-population

mutation rates are often higher than those observed between

species, the use of a phylogenetically derived mutation rate

may lead to overestimation of the timing of past population

size changes (Ho et al. 2005). To compensate for this potential

bias, we therefore ran additional sets of PSMC analyses with

higher mutation rate estimates, adopting the human mutation

rate (2.5 � 10�8 mutations/site/generation) as well as an in-

termediate rate estimate (1.5 � 10�8 mutations/site/genera-

tion). With these rates, the population expansion appears

more recent, and effective population size estimates are also

lower than with the phylogenetically derived rate. The demo-

graphic history, particularly when estimated using the faster

human mutation rate, appears to be influenced by climatic

changes related to Pleistocene glaciation cycles, as shown pre-

viously using the same method for the killer whale (Moura et al.

2014), but also for another member of the family Scombridae

(the Pacific Sierra mackerel) using mismatch distributions (López

et al. 2010). Earlier estimates of the past demography of yellow-

fin tuna based on mitochondrial D-loop mismatch distributions

suggested a very high Ne of ten million subsequent to a popu-

lation expansion about 500ka (Ely et al. 2005). In contrast, our

PSMC estimates using the phylogenetically derived mutation

rate (7.3� 10�9) suggest a population size expansion between

80 and 20ka with an Ne of ~ 65,000 after the expansion. The

great discrepancy of the population size estimates could result

from stochasticity affecting one or both of the datasets, from the

different models used to estimate demographic parameters, or

from different assumptions made for model parameters such as

the mutation rate and the generation time. Ely and coauthors

assumed a generation time of 3.5 years, whereas we assumed a

shorter time of 2.5 years according to IUCN estimates (Collette

et al. 2011). However, the use of a generation time of 3.5 years

in combination with adjusted mutation rate estimates (1.0 �

10�8 mutations/site/generation) does not change the shape or

the timing of the PSMC demographic curve, but instead leads to

even lower estimates of Ne (between 15,000 and 45,000; data
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not shown). Similarly, the use of alternative mutation rates in

PSMC analyses also decreases the estimates of Ne. Therefore, it is

likely that the large difference between population size estimates

in our study and Ely et al. (2005) is due to either an underesti-

mation of the mitochondrial mutation rate in Ely et al. (2005) or

differences between the applied models. Furthermore, we

cannot exclude the possibility that our PSMC results might be

influenced by the inclusion of sex-determinating regions, since

these have not yet been identified in tunas. By also estimating

demographic parameters with coalescent simulations in

FASTSIMCOAL2, we complemented our PSMC analyses, which

allow gradual changes in population size over time, with a

model in which population sizes are constant except at a

single divergence time. In agreement with PSMC, estimates

based on this model indicated effective population sizes in the

ancestral and the Indo-Pacific population on the order of a few

ten thousands (ancestral Ne: 33122.0±16018.9, Indo-Pacific Ne:

52423.2±20733.6), thus corroborating that the true values of

Ne are far below those estimated in Ely et al. (2005).

All coalescent-based analyses used in our study, as well as

the mismatch analysis used in Ely et al. (2005) share assump-

tions that may be violated in the investigated populations,

which could lead to biased estimates of demographic param-

eters. These assumptions include a bifurcating genealogy,

which may be inappropriate in highly fecund marine species

with large differences in reproductive success between indi-

viduals. Such differences in reproductive success can cause

overestimates of the timing of population expansion as well

as Ne (Eldon and Wakeley 2006; Grant 2016).

Furthermore, coalescent-based demographic analyses are

based on the assumption of panmictic populations, which can

lead to bias and overestimation of Ne at the time of population

subdivision if population structure is present (Li and Durbin

2011). Thus, an unknown split of yellowfin tuna populations

during the LGM into separate refugia, followed by secondary

contact could induce temporally elevated estimates of Ne,

such as those seen in our analysis. Repeated glacial cycles

and associated habitat changes in the Pleistocene have influ-

enced the distribution and abundance of many species

(Hewitt 2004) including tropical marine fish (Ludt and Rocha

2014), and have had genomic consequences for these species

due to population bottlenecks and expansions. However, to

what extent glacial cycles, and thus changing sea levels, tem-

perature, ocean currents, and oceanic productivity have influ-

enced highly mobile tropical species like the yellowfin tuna

remains unknown.

Our PSMC analyses indicate similar demographic histories

in Atlantic and Indo-Pacific yellowfin tuna specimens. This

similarity could be explained if population size changes in

both oceans were in fact driven by the same common factors,

such as sea level changes or climatic fluctuations.

Alternatively, similar demographic trajectories could result if

the two populations diverged only recently, or if they are con-

nected by substantial genetic exchange that led to a

homogenization of the genetic information used to infer de-

mography. Such connectivity between the Atlantic and Indo-

Pacific is supported by the results of our simulation-based es-

timation of demographic parameters with FASTSIMCOAL2, indi-

cating that migration across the Benguela Current (see fig. 1)

is possible for warm-water fishes like yellowfin tuna. However,

migration rate estimates were about ten times higher from the

Indo-Pacific to the Atlantic than in the opposite direction,

which suggests that gene flow across the Benguela Current

is largely unidirectional. This dispersal could be facilitated by

the warm Agulhas Current, which transports tropical water

from the Indian Ocean along the west African continental

shelf up to the Cape of Good Hope, where it mostly retroflects

back towards the Indian Ocean. Occasionally, warm-water

eddies detach from the Agulhas Current south of South

Africa (so-called “Agulhas rings;” Schouten et al. 2000),

some of which penetrate the Benguela Current and subse-

quently merge with warmer waters of the Atlantic

(Duncombe Rae 1991). Thus, Agulhas rings increase dispersal

potential for warm-water species into the Atlantic, and could

thus be the cause for the observed directionality of gene flow

in yellowfin tuna, as well as other circumtropically distributed

fishes, including the bigeye tuna (Chow et al. 2000; Durand

et al. 2005; Gonzalez et al. 2008; Gaither et al. 2016).

Summary and Significance of the Study

We here provide strong evidence for genetic differentiation

between Atlantic and Indo-Pacific yellowfin tuna populations,

as well as indications for further divergence within the Arabian

Sea. The inference of population structure in highly migratory

marine organism like the yellowfin tuna has proven to be a

difficult task, which can cause pivotal adaptive variation to

remain overlooked, thus risking the overexploitation and ex-

tinction of locally adapted populations, or even species.

Abundance and distribution of tuna have been connected

with climatic changes and weather oscillations (Kumar et al.

2014; Dueri et al. 2014), and the ongoing ocean warming

may thus lead to range shifts in some populations. The imple-

mentation of genetic population structure information into

conservation can thus help to preserve genetic diversity, se-

curing a healthy ecosystem and sustainable fisheries for the

future.
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Mullon C, Fréon P, Cury P. 2005. The dynamics of collapse in world fish-

eries. Fish Fish. 6:111–120.

Nachman MW, Crowell SL. 2000. Estimate of the mutation rate per

nucleotide in humans. Genetics 156:297–304.

Nakamura Y, Mori K, Saitoh K, et al. 2013. Evolutionary changes of mul-

tiple visual pigment genes in the complete genome of Pacific bluefin

tuna. Proc Natl Acad Sci U S A. 110:11061–11066.

Nei M. 1987. Molecular evolutionary genetics. New York: Columbia

University Press.

Nielsen EE, Hemmer-Hansen J, Larsen PF, Bekkevold D. 2009. Population

genomics of marine fishes: identifying adaptive variation in space and

time. Mol Ecol. 18:3128–3150.

Nomura S, Kobayashi T, Agawa Y, et al. 2014. Genetic population structure

of the Pacific bluefin tuna Thunnus orientalis and the yellowfin tuna

Thunnus albacares in the North Pacific Ocean. Fish Sci. 80:1193–1204.

Ortiz M. 2001. Review of tag-releases and recaptures for yellowfin tuna

from the US CTC program. ICCAT Collect Vol Sci Pap. 52:215–221.

Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma RK, Hedrick PW. 2010.

Conservation genetics in transition to conservation genomics. Trends

Genet. 26:177–187.

Patterson N, Price AL, Reich D. 2006. Population structure and eigenana-

lysis. PLoS Genet. 2:e190.

Pecoraro C, Babbucci M, Villamor A, et al. 2015. Methodological assess-

ment of 2b-RAD genotyping technique for population structure infer-

ences in yellowfin tuna (Thunnus albacares). Mar Genomics 25:43–48.

Pedrosa-Gerasmio IR, Babaran RP, Santos MD. 2012. Discrimination of

juvenile yellowfin (Thunnus albacares) and bigeye (T. obesus) tunas

using mitochondrial DNA control region and liver morphology. PLoS

One 7:e35604.

Pembleton LW, Cogan NOI, Forster JW. 2013. StAMPP: an R package for

calculation of genetic differentiation and structure of mixed-ploidy

level populations. Mol Ecol Resour. 13:946–952.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population struc-

ture using multilocus genotype data. Genetics 155:945–959.

Puechmaille SJ. 2016. The program STRUCTURE does not reliably recover

the correct population structure when sampling is uneven: sub-sam-

pling and new estimators alleviate the problem. Mol Ecol Resour.

16:608–627.

Differentiation and Demographic Histories of Yellowfin Tuna GBE

Genome Biol. Evol. 9(4):1084–1098. doi:10.1093/gbe/evx067 Advance Access publication April 13, 2017 1097



Purcell S, Neale B, Todd-Brown K, et al. 2007. PLINK: a tool set for whole-

genome association and population-based linkage analyses. Am J

Hum Genet. 81:559–575.

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for com-

paring genomic features. Bioinformatics 26:841–842.

Reiss H, Hoarau G, Dickey-Collas M, Wolff WJ. 2009. Genetic population

structure of marine fish: mismatch between biological and fisheries

management units. Fish Fish. 10:361–395.

Rice WR. 1988. Analyzing tables of statistical tests. Evolution 43:223–225.

R Core Team. 2015. R: A language and environment for statistical com-

puting. R Foundation for Statistical Computing, Vienna, Austria.

Available from: https://www.R-project.org/.

Roesti M, Kueng B, Moser D, Berner D. 2015. The genomics of ecological

vicariance in threespine stickleback fish. Nat Commun. 6:8767.

Royce WF. 1964. A morphometric study of yellowfin tuna Thunnus alba-

cares (Bonnaterre). Fish Bull. 63:395–443.

Schaefer KM. 1991. Geographic variation in morphometric characters and

gill raker counts of yellowfin tuna Thunnus albacares from the Pacific

Ocean. Fish Bull. 89:289–297.

Schouten MW, De Ruijter WPM, van Leeuwen PJ, Lutjeharms JRE. 2000.

Translation, decay and splitting of Agulhas rings in the southeastern

Atlantic Ocean. J Geophys Res. 105:21913–21925.

Singh AD, Jung S, Darling K, et al. 2011. Productivity collapses in the

Arabian Sea during glacial cold phases. Paleoceanography 26:PA3210.

Sprintall J, Gordon AL, Koch-Larrouy A, et al. 2014. The Indonesian seas

and their role in the coupled ocean-climate system. Nat Geosci. 7:487–

492.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic anal-

ysis and post-analysis of large phylogenies. Bioinformatics

30:1312–1313.

Stequert B, Rodriguez JN, Cuisset B, Menn L. F. 2001. Gonadosomatic

index and seasonal variations of plasma sex steroids in skipjack tuna

(Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) from

the western Indian Ocean. Aquat Liv Resour. 14:313–318.

Sun CL, Wang WR, Yeh S. 2005. Reproductive biology of yellowfin tuna in

the central and western Pacific Ocean. Working paper BI-WP-1, 1st

Scientific Committee meeting of the Western and Central Pacific

Fisheries Commission.

Suzuki Z, Tomlinson PK, Honma M. 1978. Population structure of Pacific

yellowfin tuna. Inter-Am Trop Tuna Comm Bull. 17:274–441.

Ward RD, Elliott NG, Grewe PM, Smolenski AJ. 1994. Allozyme and mi-

tochondrial DNA variation in yellowfin tuna (Thunnus albacares) from

the Pacific Ocean. Mar Biol. 118:531–539.

Ward RO, Elliott NG, Innes BH, Smolenski AJ, Grewe PM. 1997. Global

population structure of yellowfin tuna, Thunnus albacares, inferred

from allozyme and mitochondrial DNA variation. Fish Bull. 95:566–

575.

Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of

population structure. Evolution 38:1358–1370.

Associate editor: Marta Barluenga

Barth et al. GBE

1098 Genome Biol. Evol. 9(4):1084–1098. doi:10.1093/gbe/evx067 Advance Access publication April 13, 2017

https://www.R-project.org/

